polymer coated urea
Recently Published Documents


TOTAL DOCUMENTS

104
(FIVE YEARS 39)

H-INDEX

18
(FIVE YEARS 3)

Author(s):  
B. Balaganesh ◽  
P. Malarvizhi ◽  
N. Chandra Sekaran ◽  
P. Jeyakumar ◽  
K. R. Latha ◽  
...  

Controlled release nitrogen fertilizers could be an excellent management approach for improving nitrogen fertilizer efficiency. The present study aimed to investigate the effect of coated urea fertilizers to increase nitrogen uptake and utilization of maize. The nitrogen use efficiency of maize from various biodegradable polymer-coated urea fertilizers, such as palm stearin coated urea (PSCU), pine oleoresin coated urea (POCU), and humic acid coated urea (HACU), was determined in a pot culture experiment conducted at the Department of Soil Science and Agricultural Chemistry, Tamil Nadu Agricultural University, Coimbatore, during 2021. The coating materials have been coated on urea with different coating thicknesses, viz., PSCU - 5, 10, 15%, POCU – 2, 4, 6%, and HACU - 5, 10, 15%. Among all the treatments, T11: HACU 15% produced highest grain yield (72.0g plant-1) followed by T7: POCU 4% (69.7 g plant-1) and T4: PSCU 10% (69.0g plant-1). In terms of dry matter production, T10: PSCU 10% produced maximum dry matter (186.5g plant-1), followed by T11: HACU 15% (186.2 g plant-1), and T7: POCU 4% (185.3g plant-1). The nitrogen uptake by the maize plant was higher in T7: POCU 4 % (1.62g plant-1), followed by T11: HACU 15% (1.59 g plant-1) and T4: PSCU 10% (1.59g plant-1). Irrespective of treatments, the highest nitrogen utilization by the maize crop was found in T7: POCU 4% (73.9%) followed by T4: PSCU 10% (71.1%) and T11: HACU 15% (70.9%) treatments. When compared to uncoated urea fertilizer, all coated urea fertilizers outperformed uncoated urea fertilizer in terms of grain yield, dry matter accumulation, and nitrogen uptake. To improve the nitrogen use efficiency, coated urea fertilizers prove to be a promising alternative to uncoated urea fertilizers.


2021 ◽  
pp. 1-9
Author(s):  
Travis Wayne Shaddox ◽  
Joseph Bryan Unruh

Numerous nitrogen (N) sources are used in turfgrass management and vary from soluble to slow-release. Determining the least expensive N source can be confusing for consumers. Price per ton and price per pound N are common price comparison methods. An improved approach could use longevity of the N source to balance the price. The objective of this study was to determine the longevity of turfgrass response to N sources and to determine the cost to achieve such responses. This study was conducted in Ft. Lauderdale and Jay, FL, from 1 Jan. to 31 Dec. 2018 on ‘Riley’s Super Sport’ (Celebration®) bermudagrass (Cynodon dactylon). Treatments included nontreated turfgrass, urea, ammonium sulfate, stabilized urea, methylene urea, ureaformaldehyde, two natural organics, sulfur-coated urea, and two polymer-coated urea fertilizers. Treatments were arranged in a split-plot design with N sources as whole plots and N rate (N applied at 49 and 98 kg·ha−1 every 4 months) as subplots. Turf quality was recorded on a scale of 1 to 9, where 1 = dead/brown turf and quality, 6 = minimal acceptable, and 9 = optimal healthy/green turf. Turf quality ratings were recorded weekly and used to determine response longevity (days quality ≥6.0) and area under the turfgrass response curve (AUTRC). Urea resulted in response longevity greater than or equal to other N sources during each season except when applied at 98 kg·ha−1 of N during the fall fertilizer cycle in Jay. Natural organics were ≈6-fold more expensive than urea in Jay and Ft. Lauderdale using turfgrass response longevity and AUTRC. Urea and sulfur-coated urea were the least expensive soluble and slow-release N source, respectively, using dollars per pound N, dollars per acre per day, and dollars per acre per quality-day during each fertilizer cycle and annual average in Jay and Ft. Lauderdale. No evidence was found supporting the use of turfgrass response as a more effective method of determining fertilizer cost than dollars per pound N.


2021 ◽  
Vol 209 ◽  
pp. 104906
Author(s):  
Flávio Hiroshi Kaneko ◽  
João Paulo Ferreira ◽  
Aguinaldo José Freitas Leal ◽  
Eric Haydt Castello Branco van Cleef ◽  
Vanessa Cury Galati ◽  
...  

Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 594
Author(s):  
Ricardo Gil-Ortiz ◽  
Miguel Ángel Naranjo ◽  
Antonio Ruiz-Navarro ◽  
Marcos Caballero-Molada ◽  
Sergio Atares ◽  
...  

Increasing nutrient use efficiency of fertilizers is one of the major challenges to improve crop yields and minimize environmental impacts. This work compared the efficacy of a new ecological polymer-coated urea fertilizer and a slow release urea-based traditional fertilizer. Reductions in the N doses of the polymer-coated fertilizer were tested. A comparative study was first carried out by measuring the different physiological and yield parameters at the micro-scale level, and later-on field experiments were performed. Grain yield in the field was significantly higher (20%) when applying the new controlled-release fertilizer than when using the traditional one at the same dose. A 20% reduction in N content in the new fertilizer gave similar physiological and yield responses compared to the traditional fertilizer. We conclude that this new fertilizer can be used in extensive cropping of maize, guaranteeing at least the same yields than traditional fertilizers, with a reduction on the impact on soil properties and nitrogen losses.


Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 352
Author(s):  
Joshua L. Sloan ◽  
Francis K. Salifu ◽  
Douglass F. Jacobs

Intensively managed forest plantations often require fertilization to maintain site fertility and to improve growth and yield over successive rotations. We applied urea-based “enhanced-efficiency fertilizers” (EEF) containing 0.5 atom% 15N at a rate of 224 kg N ha−1 to soils under mid-rotation black walnut (Juglans nigra L.) plantations to track the fate of applied 15N within aboveground ecosystem components during the 12-month period after application. Treatments included Agrotain Ultra (urea coated with a urease inhibitor), Arborite EC (urea coated with water-soluble boron and phosphate), Agrium ESN (polymer-coated urea), uncoated urea, and an unfertilized control. Agrotain Ultra and Arborite EC increased N concentrations of competing vegetation within one month after fertilization, while neither Agrium ESN nor uncoated urea had any effect on competing vegetation N concentrations during the experiment. Agrotain Ultra and Arborite EC increased δ15N values in leaves of crop trees above those of controls at one and two months after fertilization, respectively. By contrast, Agrium ESN and uncoated urea had no effect on δ15N values in leaves of crop trees until three months after fertilization. Fertilizer N recovery (FNR) varied among ecosystem components, with competing vegetation acting as a sink for applied nutrients. There were no significant differences in FNR for all the urea-based EEF products compared to uncoated urea. Agrium ESN was the only EEF that exhibited controlled-release activity in this study, with other fertilizers behaving similarly to uncoated urea.


Sign in / Sign up

Export Citation Format

Share Document