Grey Wolf Optimizer Based Web usage Data Clustering with Enhanced Fuzzy C Means Algorithm

Author(s):  
P. Selvaraju ◽  
◽  
B. Kalaavathi ◽  
Author(s):  
Amolkumar Narayan Jadhav ◽  
Gomathi N.

The widespread application of clustering in various fields leads to the discovery of different clustering techniques in order to partition multidimensional data into separable clusters. Although there are various clustering approaches used in literature, optimized clustering techniques with multi-objective consideration are rare. This paper proposes a novel data clustering algorithm, Enhanced Kernel-based Exponential Grey Wolf Optimization (EKEGWO), handling two objectives. EKEGWO, which is the extension of KEGWO, adopts weight exponential functions to improve the searching process of clustering. Moreover, the fitness function of the algorithm includes intra-cluster distance and the inter-cluster distance as an objective to provide an optimum selection of cluster centroids. The performance of the proposed technique is evaluated by comparing with the existing approaches PSC, mPSC, GWO, and EGWO for two datasets: banknote authentication and iris. Four metrics, Mean Square Error (MSE), F-measure, rand and jaccord coefficient, estimates the clustering efficiency of the algorithm. The proposed EKEGWO algorithm can attain an MSE of 837, F-measure of 0.9657, rand coefficient of 0.8472, jaccord coefficient of 0.7812, for the banknote dataset.


2016 ◽  
Vol 78 (11) ◽  
Author(s):  
Amolkumar Narayan Jadhav ◽  
Gomathi N.

Clustering finds variety of application in a wide range of disciplines because it is mostly helpful for grouping of similar data objects together. Due to the wide applicability, different algorithms have been presented in the literature for segmenting large multidimensional data into discernible representative clusters. Accordingly, in this paper, Kernel-based exponential grey wolf optimizer (KEGWO) is developed for rapid centroid estimation in data clustering. Here, KEGWO is newly proposed to search the cluster centroids with a new objective evaluation which considered two parameters called logarithmic kernel function and distance difference between two top clusters. Based on the new objective function and the modified KEGWO algorithm, centroids are encoded as position vectors and the optimal location is found for the final clustering. The proposed KEGWO algorithm is evaluated with banknote authentication Data Set, iris dataset and wine dataset using four metrics such as, Mean Square Error, F-measure, Rand co-efficient and jaccord coefficient. From the outcome, we proved that the proposed KEGWO algorithm outperformed the existing algorithms.   


2018 ◽  
Vol 40 (9) ◽  
pp. 3344-3367 ◽  
Author(s):  
Fuding Xie ◽  
Cunkuan Lei ◽  
Fangfei Li ◽  
Dan Huang ◽  
Jun Yang

Sign in / Sign up

Export Citation Format

Share Document