scholarly journals A Station with Multiple Head-Mounted Displays for Learning Advanced Driver Assistance Systems

Author(s):  
Kareem Abdelgawad ◽  
Jürgen Gausemeier ◽  
Jan Berssenbrügge ◽  
Jörg Stöcklein

Advanced driver assistance systems (ADAS) are technologies that provide drivers with essential information or take over difficult and repetitive tasks. They contribute to improving road safety and increasing driving comfort. Apart from the technical development challenges, training and demonstration of ADAS in safe environments are important concerns for automobile manufacturers and suppliers. This paper presents the concept and prototypical implementation of an innovative training station for learning ADAS with driving simulators. The training station has a scalable and modular architecture, so that more than one driving simulator can be connected to a common instructor unit. Fully immersive visualization is provided by utilizing head-mounted displays for the participating driving simulators. The instructor unit consists of a computer with a developed software tool for session control, monitoring, and evaluation. Moreover, the instructor can use a head-mounted display and participate within the same virtual environment of a selected trainee. A simulation model for an autonomous driving system was implemented and a group of test persons were involved to show the usability and validity of the developed training station for ADAS learning and demonstration.

Author(s):  
Kareem Abdelgawad ◽  
Jürgen Gausemeier ◽  
Jörg Stöcklein ◽  
Michael Grafe ◽  
Jan Berssenbrügge ◽  
...  

Advanced driver assistance systems (ADAS) are technologies that provide drivers with essential information or take over difficult and repetitive tasks. They contribute to improving road safety and increasing driving comfort. Apart from the technical development challenges, training and demonstration of ADAS in safe environments are important concerns for automobile manufacturers and suppliers. This paper presents the concept and prototypical implementation of an innovative training station for learning ADAS with driving simulators. The training station has a scalable and modular architecture, so that more than one driving simulator can be connected to a common instructor unit. Fully immersive visualization is provided by utilizing head-mounted displays for the participating driving simulators. The instructor unit consists of a computer with a developed software tool for session control, monitoring, and evaluation. Moreover, the instructor can use a head-mounted display and participate within the same virtual environment of a selected trainee. A simulation model for an autonomous driving system was implemented and a group of test persons were involved to show the usability and validity of the developed training station for ADAS learning and demonstration.


Author(s):  
Jan Berssenbrügge ◽  
Ansgar Trächtler ◽  
Christoph Schmidt

Driving simulators that are capable of simulating a virtual drive at night are increasingly used for the virtual prototyping of light-based driver–assistance systems (DAS). Here, the interplay between driver and assistance system, which enhances the illumination of the road ahead of the vehicle, is investigated. For such investigations, special driving simulators are applied that not only enable a standard driving simulation but also cover the special requirements for the visualization of a driving scenery at night, the simulation of automotive headlights during a virtual drive at night, and the interface to a headlight control module (HCM) that operates the physical headlight prototypes. In this paper, we present the visualization system of the reconfigurable driving simulator from the research project TRAFFIS. We describe the special application focus on the virtual prototyping of a light-based DAS from our project partner Varroc Lighting Systems. The light-based DAS is based on a headlight prototype that combines a glare-free high-beam (GFHB) function and a predictive adaptive frontlighting system (PAFS) for glare-free driving with maximized headlight time.


Author(s):  
Kareem Abdelgawad ◽  
Jürgen Gausemeier ◽  
Jörg Stöcklein ◽  
Michael Grafe ◽  
Jan Berssenbrügge ◽  
...  

Automotive manufacturers and suppliers develop new vehicle systems, such as Advanced Driver Assistance Systems (ADAS), to increase traffic safety and driving comfort. ADAS are technologies that provide drivers with essential information or take over demanding driving tasks. More complex and intelligent vehicle systems are being developed toward fully autonomous and cooperative driving. Apart from the technical development challenges, training of drivers with these complex vehicle systems represents an important concern for automotive manufacturers. This paper highlights the new evolving requirements concerning the training of drivers with future complex vehicle systems. In accordance with these requirements, a new training concept is introduced, and a prototype of a training platform is implemented for utilization in future driving schools. The developed training platform has a scalable and modular architecture so that more than one driving simulator can be networked to a common driving instructor unit. The participating driving simulators provide fully immersive visualization to the drivers by utilizing head-mounted displays instead of conventional display screens and projectors. The driving instructor unit consists of a computer with a developed software tool for training session control, monitoring, and evaluation. Moreover, the driving instructor can use a head-mounted display to participate interactively within the same virtual environment of any selected driver. A simulation model of an autonomous driving system was implemented and integrated in the participating driving simulators. Using this simulation model, training sessions were conducted with the help of a group of test drivers and professional driving instructors to prove the validity of the developed concept and show the usability of the implemented training platform.


Author(s):  
Jan Berssenbrügge ◽  
Ansgar Trächtler ◽  
Christoph Schmidt

Driving simulators that are capable of a simulation of a virtual drive at night are increasingly used for the virtual prototyping of light-based driver assistance systems. Here, the interplay between driver and assistance system, which enhances the illumination of the road ahead of the vehicle, is investigated. For such investigations, special driving simulators are applied that enable not only a standard driving simulation but also cover the special requirements for the visualization of a driving scenery at night, the simulation of automotive headlights during a virtual drive at night, and the interface to a headlight control module (HCM) that operates the physical headlight prototypes. In this paper, we present the visualization system of the reconfigurable driving simulator from the research project TRAFFIS. We describe the special application focus on the virtual prototyping of a light-based driver assistance system from our project partner Varroc Lighting Systems. The light-based DAS bases on a headlight prototype that combines a glare-free high beam (GFHB) function and a predictive adaptive frontlighting system (PAFS) for glare-free driving with maximized headlight time.


Sign in / Sign up

Export Citation Format

Share Document