scholarly journals A New Class of Degenerate Hermite Poly-Genocchi Polynomials

Author(s):  
Waseem A. Khan ◽  
K.S. Nisar

In this article, authors introduce a new class of degenerate Hermite poly-Genocchi polynomials and give some identities of these polynomials related to the Stirling numbers of the second kind. Some implicit summation formulae and general symmetry identities are derived by using different analytical means and applying generating functions. These results extend some known summations and identities of degenerate Hermite poly-Bernoulli numbers and polynomials studied by Khan [8].

2017 ◽  
Vol 58 (1) ◽  
pp. 97-112 ◽  
Author(s):  
Waseem A. Khan ◽  
M. Ghayasuddin ◽  
M. Shadab

Abstract In this paper, we introduce a new class of Hermite multiple-poly-Bernoulli numbers and polynomials of the second kind and investigate some properties for these polynomials. We derive some implicit summation formulae and general symmetry identities by using different analytical means and applying generating functions. The results derived here are a generalization of some known summation formulae earlier studied by Pathan and Khan.


2016 ◽  
Vol 57 (1) ◽  
pp. 67-89 ◽  
Author(s):  
N.U. Khan ◽  
T. Usman

Abstract In this paper, we introduce a unified family of Laguerre-based Apostol Bernoulli, Euler and Genocchi polynomials and derive some implicit summation formulae and general symmetry identities arising from different analytical means and applying generating functions. The result extend some known summations and identities of generalized Bernoulli, Euler and Genocchi numbers and polynomials.


Mathematics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 243
Author(s):  
Dmitry Kruchinin ◽  
Vladimir Kruchinin ◽  
Yilmaz Simsek

The aim of this paper is to study the Tepper identity, which is very important in number theory and combinatorial analysis. Using generating functions and compositions of generating functions, we derive many identities and relations associated with the Bernoulli numbers and polynomials, the Euler numbers and polynomials, and the Stirling numbers. Moreover, we give applications related to the Tepper identity and these numbers and polynomials.


2019 ◽  
Vol 106 (120) ◽  
pp. 113-123
Author(s):  
Neslihan Kilar ◽  
Yilmaz Simsek

The Fubini type polynomials have many application not only especially in combinatorial analysis, but also other branches of mathematics, in engineering and related areas. Therefore, by using the p-adic integrals method and functional equation of the generating functions for Fubini type polynomials and numbers, we derive various different new identities, relations and formulas including well-known numbers and polynomials such as the Bernoulli numbers and polynomials, the Euler numbers and polynomials, the Stirling numbers of the second kind, the ?-array polynomials and the Lah numbers.


Author(s):  
Waseem Khan ◽  
Idrees Ahmad Khan ◽  
Mehmet Acikgoz ◽  
Ugur Duran

In this paper, a new class of q-Hermite based Frobenius type Eulerian polynomials is introduced by means of generating function and series representation. Several fundamental formulas and recurrence relations for these polynomials are derived via different generating methods. Furthermore, diverse correlations including the q-Apostol-Bernoulli polynomials, the q-Apostol-Euler poynoomials, the q-Apostol-Genocchi polynomials and the q-Stirling numbers of the second kind are also established by means of the their generating functions.


Mathematics ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 643
Author(s):  
Sunil Kumar Sharma ◽  
Waseem A. Khan ◽  
Cheon Seoung Ryoo

In this paper, we propose a parametric kind of Fubini polynomials by defining the two specific generating functions. We also investigate some analytical properties (for example, summation formulae, differential formulae and relationships with other well-known polynomials and numbers) for our introduced polynomials in a systematic way. Furthermore, we consider some relationships for parametric kind of Fubini polynomials associated with Bernoulli, Euler, and Genocchi polynomials and Stirling numbers of the second kind.


2015 ◽  
Vol 55 (1) ◽  
pp. 153-170 ◽  
Author(s):  
M. A. Pathan ◽  
Waseem A. Khan

Abstract In this paper, we introduce a new class of generalized Apostol-Hermite-Euler polynomials and Apostol-Hermite-Genocchi polynomials and derive some implicit summation formulae by applying the generating functions. These results extend some known summations and identities of generalized Hermite-Euler polynomials studied by Dattoli et al, Kurt and Pathan.


Filomat ◽  
2019 ◽  
Vol 33 (7) ◽  
pp. 1967-1977 ◽  
Author(s):  
Waseem Khan ◽  
Divesh Srivastava

The main object of this work is to introduce a new class of the generalized Apostol-type Frobenius-Genocchi polynomials and is to investigate some properties and relations of them. We derive implicit summation formulae and symmetric identities by applying the generating functions. In addition a relation in between Array-type polynomials, Apostol-Bernoulli polynomials and generalized Apostol-type Frobenius-Genocchi polynomials is also given.


Author(s):  
Waseem A. Khan

The main purpose of this paper is to introduce a new class of $q$-Hermite-Fubini numbers and polynomials by combining the $q$-Hermite polynomials and $q$-Fubini polynomials. By using generating functions for these numbers and polynomials, we derive some alternative summation formulas including powers of consecutive $q$-integers.  Also, we establish some relationships for $q$-Hermite-Fubini polynomials associated with $q$-Bernoulli polynomials, $q$-Euler polynomials and $q$-Genocchi polynomials and $q$-Stirling numbers of the second kind.


2021 ◽  
Vol 40 (2) ◽  
pp. 313-334
Author(s):  
M. A. Pathan ◽  
Waseem A. Khan

In this paper, we introduce a new class of generalized extended Laguerre-based Apostol-type-Bernoulli, Apostol-type-Euler and Apostoltype-Genocchi polynomials. These Apostol type polynomials are used to connect Fubini-Hermite and Bell-Hermite polynomials and to find new representations. We derive some implicit summation formulae and symmetric identities for these families of special functions by applying the generating functions.


Sign in / Sign up

Export Citation Format

Share Document