scholarly journals Some Properties of $Q$-Hermite Fubini Numbers and Polynomials

Author(s):  
Waseem A. Khan

The main purpose of this paper is to introduce a new class of $q$-Hermite-Fubini numbers and polynomials by combining the $q$-Hermite polynomials and $q$-Fubini polynomials. By using generating functions for these numbers and polynomials, we derive some alternative summation formulas including powers of consecutive $q$-integers.  Also, we establish some relationships for $q$-Hermite-Fubini polynomials associated with $q$-Bernoulli polynomials, $q$-Euler polynomials and $q$-Genocchi polynomials and $q$-Stirling numbers of the second kind.

Author(s):  
Waseem A. Khan

In this paper, we introduce a new class of  $(p,q)$-analogue type of Fubini numbers and polynomials and investigate some properties of these polynomials. We establish summation formulas of these polynomials by summation techniques series. Furthermore, we consider some relationships for  $(p,q)$-Fubini polynomials associated with $(p,q)$-Bernoulli polynomials, $(p,q)$-Euler polynomials and $(p,q)$-Genocchi polynomials and $(p,q)$-Stirling numbers of the second kind.


Author(s):  
Waseem Khan ◽  
Idrees Ahmad Khan ◽  
Mehmet Acikgoz ◽  
Ugur Duran

In this paper, a new class of q-Hermite based Frobenius type Eulerian polynomials is introduced by means of generating function and series representation. Several fundamental formulas and recurrence relations for these polynomials are derived via different generating methods. Furthermore, diverse correlations including the q-Apostol-Bernoulli polynomials, the q-Apostol-Euler poynoomials, the q-Apostol-Genocchi polynomials and the q-Stirling numbers of the second kind are also established by means of the their generating functions.


Author(s):  
Ugur Duran ◽  
Mehmet Acikgoz ◽  
Serkan Araci

Recently, Kim-Kim [13] have introduced polyexponential functions as an inverse to the polylogarithm functions, and constructed type 2 poly-Bernoulli polynomials. They have also introduced unipoly functions attached to each suitable arithmetic function as a universal concept. Inspired by their work, in this paper, we introduce a new class of the Frobenius-Genocchi polynomials. We derive the diverse formulas and identities covering some summation formulas, derivative formula and correlations with Bernoulli polynomials and numbers, Stirling numbers of the both kinds, degenerate Frobenius-Genocchi polynomials and degenerate Frobenius-Euler polynomials. Moreover, by using the unipoly function as following Kim-Kim's work in <cite>Kim1</cite>, we consider degenerate unipoly-Frobenius-Genocchi polynomials and investigate some formulas and relationships with Daehee numbers, degenerate Frobenius-Genocchi numbers and Stirling numbers of the first kind. Finally, we obtain an Gaussian integral representation of the Frobenius-Genocchi polynomials in terms of the 2-variable Hermite polynomials.


2015 ◽  
Vol 55 (1) ◽  
pp. 153-170 ◽  
Author(s):  
M. A. Pathan ◽  
Waseem A. Khan

Abstract In this paper, we introduce a new class of generalized Apostol-Hermite-Euler polynomials and Apostol-Hermite-Genocchi polynomials and derive some implicit summation formulae by applying the generating functions. These results extend some known summations and identities of generalized Hermite-Euler polynomials studied by Dattoli et al, Kurt and Pathan.


Author(s):  
Mehmet Acikgoz ◽  
Serkan Araci ◽  
Ugur Duran

We consider a new class of generating functions of the generalizations of Bernoulli and Euler polynomials in terms of (p, q)-integers. By making use of these generating functions, we derive (p, q)-generalizations of several old and new identities concerning Apostol–Bernoulli and Apostol–Euler polynomials. Finally, we define the (p, q)-generalization of Stirling polynomials of the second kind of order v, and provide a link between the (p, q)-generalization of Bernoulli polynomials of order v and the (p, q)-generalization of Stirling polynomials of the second kind of order v.


Filomat ◽  
2019 ◽  
Vol 33 (7) ◽  
pp. 1967-1977 ◽  
Author(s):  
Waseem Khan ◽  
Divesh Srivastava

The main object of this work is to introduce a new class of the generalized Apostol-type Frobenius-Genocchi polynomials and is to investigate some properties and relations of them. We derive implicit summation formulae and symmetric identities by applying the generating functions. In addition a relation in between Array-type polynomials, Apostol-Bernoulli polynomials and generalized Apostol-type Frobenius-Genocchi polynomials is also given.


Mathematics ◽  
2019 ◽  
Vol 7 (5) ◽  
pp. 431 ◽  
Author(s):  
Ugur Duran ◽  
Mehmet Acikgoz

In this paper, we introduce the two-variable truncated Fubini polynomials and numbers and then investigate many relations and formulas for these polynomials and numbers, including summation formulas, recurrence relations, and the derivative property. We also give some formulas related to the truncated Stirling numbers of the second kind and Apostol-type Stirling numbers of the second kind. Moreover, we derive multifarious correlations associated with the truncated Euler polynomials and truncated Bernoulli polynomials.


Author(s):  
Waseem A. Khan ◽  
K.S. Nisar

In this article, authors introduce a new class of degenerate Hermite poly-Genocchi polynomials and give some identities of these polynomials related to the Stirling numbers of the second kind. Some implicit summation formulae and general symmetry identities are derived by using different analytical means and applying generating functions. These results extend some known summations and identities of degenerate Hermite poly-Bernoulli numbers and polynomials studied by Khan [8].


2021 ◽  
Vol 40 (2) ◽  
pp. 313-334
Author(s):  
M. A. Pathan ◽  
Waseem A. Khan

In this paper, we introduce a new class of generalized extended Laguerre-based Apostol-type-Bernoulli, Apostol-type-Euler and Apostoltype-Genocchi polynomials. These Apostol type polynomials are used to connect Fubini-Hermite and Bell-Hermite polynomials and to find new representations. We derive some implicit summation formulae and symmetric identities for these families of special functions by applying the generating functions.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Letelier Castilla ◽  
William Ramírez ◽  
Alejandro Urieles

Through a modification on the parameters associated with generating function of the q-extensions for the Apostol type polynomials of order α and level m, we obtain some new results related to a unified presentation of the q-analog of the generalized Apostol type polynomials of order α and level m. In addition, we introduce some algebraic and differential properties for the q-analog of the generalized Apostol type polynomials of order α and level m and the relation of these with the q-Stirling numbers of the second kind, the generalized q-Bernoulli polynomials of level m, the generalized q-Apostol type Bernoulli polynomials, the generalized q-Apostol type Euler polynomials, the generalized q-Apostol type Genocchi polynomials of order α and level m, and the q-Bernstein polynomials.


Sign in / Sign up

Export Citation Format

Share Document