scholarly journals Identities and relations for Fubini type numbers and polynomials via generating functions and p-adic integral approach

2019 ◽  
Vol 106 (120) ◽  
pp. 113-123
Author(s):  
Neslihan Kilar ◽  
Yilmaz Simsek

The Fubini type polynomials have many application not only especially in combinatorial analysis, but also other branches of mathematics, in engineering and related areas. Therefore, by using the p-adic integrals method and functional equation of the generating functions for Fubini type polynomials and numbers, we derive various different new identities, relations and formulas including well-known numbers and polynomials such as the Bernoulli numbers and polynomials, the Euler numbers and polynomials, the Stirling numbers of the second kind, the ?-array polynomials and the Lah numbers.

Mathematics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 243
Author(s):  
Dmitry Kruchinin ◽  
Vladimir Kruchinin ◽  
Yilmaz Simsek

The aim of this paper is to study the Tepper identity, which is very important in number theory and combinatorial analysis. Using generating functions and compositions of generating functions, we derive many identities and relations associated with the Bernoulli numbers and polynomials, the Euler numbers and polynomials, and the Stirling numbers. Moreover, we give applications related to the Tepper identity and these numbers and polynomials.


Symmetry ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 9 ◽  
Author(s):  
Daeyeoul Kim ◽  
Yilmaz Simsek ◽  
Ji Suk So

The purpose of this paper is to construct generating functions for negative order Changhee numbers and polynomials. Using these generating functions with their functional equation, we prove computation formulas for combinatorial numbers and polynomials. These formulas include Euler numbers and polynomials of higher order, Stirling numbers, and negative order Changhee numbers and polynomials. We also give some properties of these numbers and polynomials with their generating functions. Moreover, we give relations among Changhee numbers and polynomials of negative order, combinatorial numbers and polynomials and Bernoulli numbers of the second kind. Finally, we give a partial derivative of an equation for generating functions for Changhee numbers and polynomials of negative order. Using these differential equations, we derive recurrence relations, differential and integral formulas for these numbers and polynomials. We also give p-adic integrals representations for negative order Changhee polynomials including Changhee numbers and Deahee numbers.


Author(s):  
Feng Qi ◽  
Bai-Ni Guo

In the paper, the authors view some ordinary differential equations and their solutions from the angle of (the generalized) derivative polynomials and simplify some known identities for the Bernoulli numbers and polynomials, the Frobenius-Euler polynomials, the Euler numbers and polynomials, in terms of the Stirling numbers of the first and second kinds.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1484
Author(s):  
Yilmaz Simsek

The aim of this paper is to study and investigate generating-type functions, which have been recently constructed by the author, with the aid of the Euler’s identity, combinatorial sums, and p-adic integrals. Using these generating functions with their functional equation, we derive various interesting combinatorial sums and identities including new families of numbers and polynomials, the Bernoulli numbers, the Euler numbers, the Stirling numbers, the Daehee numbers, the Changhee numbers, and other numbers and polynomials. Moreover, we present some revealing remarks and comments on the results of this paper.


Filomat ◽  
2020 ◽  
Vol 34 (2) ◽  
pp. 515-520
Author(s):  
Secil Bilgic ◽  
Veli Kurt

Many mathematicians in ([1],[2],[5],[14],[20]) introduced and investigated the generalized q-Bernoulli numbers and polynomials and the generalized q-Euler numbers and polynomials and the generalized q-Gennochi numbers and polynomials. Mahmudov ([15],[16]) considered and investigated the q-Bernoulli polynomials B(?)n,q(x,y) in x,y of order ? and the q-Euler polynomials E(?) n,q (x,y)in x,y of order ?. In this work, we define generalized q-poly-Bernoulli polynomials B[k,?] n,q (x,y) in x,y of order ?. We give new relations between the generalized q-poly-Bernoulli polynomials B[k,?] n,q (x,y) in x,y of order ? and the generalized q-poly-Euler polynomials ?[k,?] n,q (x,y) in x,y of order ? and the q-Stirling numbers of the second kind S2,q(n,k).


Filomat ◽  
2017 ◽  
Vol 31 (15) ◽  
pp. 4833-4844 ◽  
Author(s):  
Eda Yuluklu ◽  
Yilmaz Simsek ◽  
Takao Komatsu

The aim of this paper is to give some new identities and relations related to the some families of special numbers such as the Bernoulli numbers, the Euler numbers, the Stirling numbers of the first and second kinds, the central factorial numbers and also the numbers y1(n,k,?) and y2(n,k,?) which are given Simsek [31]. Our method is related to the functional equations of the generating functions and the fermionic and bosonic p-adic Volkenborn integral on Zp. Finally, we give remarks and comments on our results.


Author(s):  
Waseem A. Khan ◽  
K.S. Nisar

In this article, authors introduce a new class of degenerate Hermite poly-Genocchi polynomials and give some identities of these polynomials related to the Stirling numbers of the second kind. Some implicit summation formulae and general symmetry identities are derived by using different analytical means and applying generating functions. These results extend some known summations and identities of degenerate Hermite poly-Bernoulli numbers and polynomials studied by Khan [8].


2017 ◽  
Vol 14 (01) ◽  
pp. 241-253 ◽  
Author(s):  
Ugur Duran ◽  
Mehmet Acikgoz

Recently, Araci et al. introduced [Formula: see text]-analogue of the Haar distribution and by means of the distribution, they constructed [Formula: see text]-Volkenborn integral yielding to Carlitz-type [Formula: see text]-Bernoulli numbers and polynomials. The aim of the present paper is to introduce a generalization of the fermionic [Formula: see text]-adic measure based on [Formula: see text]-integers and set the corresponding integral to this measure. Consequently, Carlitz-type [Formula: see text]-Euler polynomials and numbers are defined in terms of the above mentioned integral. Moreover, some of their identities and properties are established.


Filomat ◽  
2018 ◽  
Vol 32 (20) ◽  
pp. 6869-6877
Author(s):  
Yilmaz Simsek

In this paper, by using some families of special numbers and polynomials with their generating functions and functional equations, we derive many new identities and relations related to these numbers and polynomials. These results are associated with well-known numbers and polynomials such as Euler numbers, Stirling numbers of the second kind, central factorial numbers and array polynomials. Furthermore, by using higher-order partial differential equations, we derive some combinatorial sums and identities. Finally, we give two computation algorithms for Euler numbers and central factorial numbers.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Sunil Kumar Sharma ◽  
Waseem A. Khan ◽  
Serkan Araci ◽  
Sameh S. Ahmed

Abstract Recently, Kim and Kim (Russ. J. Math. Phys. 27(2):227–235, 2020) have studied new type degenerate Bernoulli numbers and polynomials by making use of degenerate logarithm. Motivated by (Kim and Kim in Russ. J. Math. Phys. 27(2):227–235, 2020), we consider a special class of polynomials, which we call a new type of degenerate Daehee numbers and polynomials of the second kind. By using their generating function, we derive some new relations including the degenerate Stirling numbers of the first and second kinds. Moreover, we introduce a new type of higher-order degenerate Daehee polynomials of the second kind. We also derive some new identities and properties of this type of polynomials.


Sign in / Sign up

Export Citation Format

Share Document