scholarly journals A Note on $(P,Q)$-Analogue Type of Fubini Numbers and Polynomials

Author(s):  
Waseem A. Khan

In this paper, we introduce a new class of  $(p,q)$-analogue type of Fubini numbers and polynomials and investigate some properties of these polynomials. We establish summation formulas of these polynomials by summation techniques series. Furthermore, we consider some relationships for  $(p,q)$-Fubini polynomials associated with $(p,q)$-Bernoulli polynomials, $(p,q)$-Euler polynomials and $(p,q)$-Genocchi polynomials and $(p,q)$-Stirling numbers of the second kind.

Author(s):  
Waseem A. Khan

The main purpose of this paper is to introduce a new class of $q$-Hermite-Fubini numbers and polynomials by combining the $q$-Hermite polynomials and $q$-Fubini polynomials. By using generating functions for these numbers and polynomials, we derive some alternative summation formulas including powers of consecutive $q$-integers.  Also, we establish some relationships for $q$-Hermite-Fubini polynomials associated with $q$-Bernoulli polynomials, $q$-Euler polynomials and $q$-Genocchi polynomials and $q$-Stirling numbers of the second kind.


Author(s):  
Waseem Khan ◽  
Idrees Ahmad Khan ◽  
Mehmet Acikgoz ◽  
Ugur Duran

In this paper, a new class of q-Hermite based Frobenius type Eulerian polynomials is introduced by means of generating function and series representation. Several fundamental formulas and recurrence relations for these polynomials are derived via different generating methods. Furthermore, diverse correlations including the q-Apostol-Bernoulli polynomials, the q-Apostol-Euler poynoomials, the q-Apostol-Genocchi polynomials and the q-Stirling numbers of the second kind are also established by means of the their generating functions.


Mathematics ◽  
2019 ◽  
Vol 7 (5) ◽  
pp. 431 ◽  
Author(s):  
Ugur Duran ◽  
Mehmet Acikgoz

In this paper, we introduce the two-variable truncated Fubini polynomials and numbers and then investigate many relations and formulas for these polynomials and numbers, including summation formulas, recurrence relations, and the derivative property. We also give some formulas related to the truncated Stirling numbers of the second kind and Apostol-type Stirling numbers of the second kind. Moreover, we derive multifarious correlations associated with the truncated Euler polynomials and truncated Bernoulli polynomials.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Letelier Castilla ◽  
William Ramírez ◽  
Alejandro Urieles

Through a modification on the parameters associated with generating function of the q-extensions for the Apostol type polynomials of order α and level m, we obtain some new results related to a unified presentation of the q-analog of the generalized Apostol type polynomials of order α and level m. In addition, we introduce some algebraic and differential properties for the q-analog of the generalized Apostol type polynomials of order α and level m and the relation of these with the q-Stirling numbers of the second kind, the generalized q-Bernoulli polynomials of level m, the generalized q-Apostol type Bernoulli polynomials, the generalized q-Apostol type Euler polynomials, the generalized q-Apostol type Genocchi polynomials of order α and level m, and the q-Bernstein polynomials.


Author(s):  
Ugur Duran ◽  
Mehmet Acikgoz ◽  
Serkan Araci

Recently, Kim-Kim [13] have introduced polyexponential functions as an inverse to the polylogarithm functions, and constructed type 2 poly-Bernoulli polynomials. They have also introduced unipoly functions attached to each suitable arithmetic function as a universal concept. Inspired by their work, in this paper, we introduce a new class of the Frobenius-Genocchi polynomials. We derive the diverse formulas and identities covering some summation formulas, derivative formula and correlations with Bernoulli polynomials and numbers, Stirling numbers of the both kinds, degenerate Frobenius-Genocchi polynomials and degenerate Frobenius-Euler polynomials. Moreover, by using the unipoly function as following Kim-Kim's work in <cite>Kim1</cite>, we consider degenerate unipoly-Frobenius-Genocchi polynomials and investigate some formulas and relationships with Daehee numbers, degenerate Frobenius-Genocchi numbers and Stirling numbers of the first kind. Finally, we obtain an Gaussian integral representation of the Frobenius-Genocchi polynomials in terms of the 2-variable Hermite polynomials.


Mathematics ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 281
Author(s):  
Ghulam Muhiuddin ◽  
Waseem Ahmad Khan ◽  
Ugur Duran

In the present work, a new extension of the two-variable Fubini polynomials is introduced by means of the polyexponential function, which is called the two-variable type 2 poly-Fubini polynomials. Then, some useful relations including the Stirling numbers of the second and the first kinds, the usual Fubini polynomials, and the higher-order Bernoulli polynomials are derived. Also, some summation formulas and an integral representation for type 2 poly-Fubini polynomials are investigated. Moreover, two-variable unipoly-Fubini polynomials are introduced utilizing the unipoly function, and diverse properties involving integral and derivative properties are attained. Furthermore, some relationships covering the two-variable unipoly-Fubini polynomials, the Stirling numbers of the second and the first kinds, and the Daehee polynomials are acquired.


Mathematics ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 144 ◽  
Author(s):  
Ugur Duran ◽  
Mehmet Acikgoz

The main aim of this paper is to introduce the degenerate truncated forms of multifarious special polynomials and numbers and is to investigate their various properties and relationships by using the series manipulation method and diverse special proof techniques. The degenerate truncated exponential polynomials are first considered and their several properties are given. Then the degenerate truncated Stirling polynomials of the second kind are defined and their elementary properties and relations are proved. Also, the degenerate truncated forms of the bivariate Fubini and Bell polynomials and numbers are introduced and various relations and formulas for these polynomials and numbers, which cover several summation formulas, addition identities, recurrence relationships, derivative property and correlations with the degenerate truncated Stirling polynomials of the second kind, are acquired. Thereafter, the truncated degenerate Bernoulli and Euler polynomials are considered and multifarious correlations and formulas including summation formulas, derivation rules and correlations with the degenerate truncated Stirling numbers of the second are derived. In addition, regarding applications, by introducing the degenerate truncated forms of the classical Bernstein polynomials, we obtain diverse correlations and formulas. Some interesting surface plots of these polynomials in the special cases are provided.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Daeyeoul Kim ◽  
Burak Kurt ◽  
Veli Kurt

Mahmudov (2012, 2013) introduced and investigated someq-extensions of theq-Bernoulli polynomialsℬn,qαx,yof orderα, theq-Euler polynomialsℰn,qαx,yof orderα, and theq-Genocchi polynomials𝒢n,qαx,yof orderα. In this paper, we give some identities forℬn,qαx,y,𝒢n,qαx,y, andℰn,qαx,yand the recurrence relations between these polynomials. This is an analogous result to theq-extension of the Srivastava-Pintér addition theorem in Mahmudov (2013).


Filomat ◽  
2020 ◽  
Vol 34 (2) ◽  
pp. 475-482
Author(s):  
Veli Kurt

In this work, we define the generalized q-poly-Euler numbers of the second kind of order ? and the generalized q-poly-Euler polynomials of the second kind of order ?. We investigate some basic properties for these polynomials and numbers. In addition, we obtain many identities, relations including the Roger-Sz?go polynomials, the Al-Salam Carlitz polynomials, q-analogue Stirling numbers of the second kind and two variable Bernoulli polynomials.


Sign in / Sign up

Export Citation Format

Share Document