scholarly journals Wind Speed Prediction Using a Hybrid Model of the Multi-Layer Perceptron and Whale Optimization Algorithm

Author(s):  
Saeed Samadianfard ◽  
Sajjad Hashemi ◽  
Katayoun Kargar ◽  
Mojtaba Izadyar ◽  
Ali Mostafaeipour ◽  
...  

Wind power as a renewable source of energy, has numerous economic, environmental and social benefits. In order to enhance and control the renewable wind power, it is vital to utilize models that predict wind speed with high accuracy. Due to neglecting of requirement and significance of data preprocessing and disregarding the inadequacy of using a single predicting model, many traditional models have poor performance in wind speed prediction. In the current study, for predicting wind speed at target stations in the north of Iran, the combination of a multi-layer perceptron model (MLP) with the Whale Optimization Algorithm (WOA) used to build new method (MLP-WOA) with a limited set of data (2004-2014). Then, the MLP-WOA model was utilized at each of the ten target stations, with the nine stations for training and tenth station for testing (namely: Astara, Bandar-E-Anzali, Rasht, Manjil, Jirandeh, Talesh, Kiyashahr, Lahijan, Masuleh and Deylaman) to increase the accuracy of the subsequent hybrid model. Capability of the hybrid model in wind speed forecasting at each target station was compared with the MLP model without the WOA optimizer. To determine definite results, numerous statistical performances were utilized. For all ten target stations, the MLP-WOA model had precise outcomes than the standalone MLP model. The hybrid model had acceptable performances with lower amounts of the RMSE, SI and RE parameters and higher values of NSE, WI and KGE parameters. It was concluded that WOA optimization algorithm can improve prediction accuracy of MLP model and may be recommended for accurate wind speed prediction.

2020 ◽  
Vol 6 ◽  
pp. 1147-1159 ◽  
Author(s):  
Saeed Samadianfard ◽  
Sajjad Hashemi ◽  
Katayoun Kargar ◽  
Mojtaba Izadyar ◽  
Ali Mostafaeipour ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-22 ◽  
Author(s):  
Aiqing Kang ◽  
Qingxiong Tan ◽  
Xiaohui Yuan ◽  
Xiaohui Lei ◽  
Yanbin Yuan

Hybrid Ensemble Empirical Mode Decomposition (EEMD) and Least Square Support Vector Machine (LSSVM) is proposed to improve short-term wind speed forecasting precision. The EEMD is firstly utilized to decompose the original wind speed time series into a set of subseries. Then the LSSVM models are established to forecast these subseries. Partial autocorrelation function is adopted to analyze the inner relationships between the historical wind speed series in order to determine input variables of LSSVM models for prediction of every subseries. Finally, the superposition principle is employed to sum the predicted values of every subseries as the final wind speed prediction. The performance of hybrid model is evaluated based on six metrics. Compared with LSSVM, Back Propagation Neural Networks (BP), Auto-Regressive Integrated Moving Average (ARIMA), combination of Empirical Mode Decomposition (EMD) with LSSVM, and hybrid EEMD with ARIMA models, the wind speed forecasting results show that the proposed hybrid model outperforms these models in terms of six metrics. Furthermore, the scatter diagrams of predicted versus actual wind speed and histograms of prediction errors are presented to verify the superiority of the hybrid model in short-term wind speed prediction.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Chao Yuan ◽  
Yiming Tang ◽  
Rui Mei ◽  
Fei Mo ◽  
Hong Wang

To enable power generation companies to make full use of effective wind energy resources and grid companies to correctly schedule wind power, this paper proposes a model of offshore wind power forecast considering the variation of wind speed in second-level time scale. First, data preprocessing is utilized to process the abnormal data and complete the normalization of offshore wind speed and wind power. Then, a wind speed prediction model is established in the second time scale through the differential smoothing power sequence. Finally, a rolling PSO-LSTM memory network is authorized to realize the prediction of second-level time scale wind speed and power. An offshore wind power case is utilized to illustrate and characterize the performance of the wind power forecast model.


Sign in / Sign up

Export Citation Format

Share Document