hyperparameter optimization
Recently Published Documents


TOTAL DOCUMENTS

292
(FIVE YEARS 233)

H-INDEX

14
(FIVE YEARS 7)

2022 ◽  
Vol 8 ◽  
Author(s):  
Boshen Yang ◽  
Sixuan Xu ◽  
Di Wang ◽  
Yu Chen ◽  
Zhenfa Zhou ◽  
...  

Background: Hypertension is a rather common comorbidity among critically ill patients and hospital mortality might be higher among critically ill patients with hypertension (SBP ≥ 140 mmHg and/or DBP ≥ 90 mmHg). This study aimed to explore the association between ACEI/ARB medication during ICU stay and all-cause in-hospital mortality in these patients.Methods: A retrospective cohort study was conducted based on data from Medical Information Mart for Intensive Care IV (MIMIC-IV) database, which consisted of more than 40,000 patients in ICU between 2008 and 2019 at Beth Israel Deaconess Medical Center. Adults diagnosed with hypertension on admission and those had high blood pressure (SBP ≥ 140 mmHg and/or DBP ≥ 90 mmHg) during ICU stay were included. The primary outcome was all-cause in-hospital mortality. Patients were divided into ACEI/ARB treated and non-treated group during ICU stay. Propensity score matching (PSM) was used to adjust potential confounders. Nine machine learning models were developed and validated based on 37 clinical and laboratory features of all patients. The model with the best performance was selected based on area under the receiver operating characteristic curve (AUC) followed by 5-fold cross-validation. After hyperparameter optimization using Grid and random hyperparameter search, a final LightGBM model was developed, and Shapley Additive exPlanations (SHAP) values were calculated to evaluate feature importance of each feature. The features closely associated with hospital mortality were presented as significant features.Results: A total of 15,352 patients were enrolled in this study, among whom 5,193 (33.8%) patients were treated with ACEI/ARB. A significantly lower all-cause in-hospital mortality was observed among patients treated with ACEI/ARB (3.9 vs. 12.7%) as well as a lower 28-day mortality (3.6 vs. 12.2%). The outcome remained consistent after propensity score matching. Among nine machine learning models, the LightGBM model had the highest AUC = 0.9935. The SHAP plot was employed to make the model interpretable based on LightGBM model after hyperparameter optimization, showing that ACEI/ARB use was among the top five significant features, which were associated with hospital mortality.Conclusions: The use of ACEI/ARB in critically ill patients with hypertension during ICU stay is related to lower all-cause in-hospital mortality, which was independently associated with increased survival in a large and heterogeneous cohort of critically ill hypertensive patients with or without kidney dysfunction.


IEEE Access ◽  
2022 ◽  
pp. 1-1
Author(s):  
Anjir Ahmed Chowdhury ◽  
Md Abir Hossen ◽  
Md Ali Azam ◽  
Md Hafizur Rahman

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Zhen Li ◽  
Tong Li ◽  
YuMei Wu ◽  
Liu Yang ◽  
Hong Miao ◽  
...  

In order to improve software quality and testing efficiency, this paper implements the prediction of software defects based on deep learning. According to the respective advantages and disadvantages of the particle swarm algorithm and the wolf swarm algorithm, the two algorithms are mixed to realize the complementary advantages of the algorithms. At the same time, the hybrid algorithm is used in the search of model hyperparameter optimization, the loss function of the model is used as the fitness function, and the collaborative search ability of the swarm intelligence population is used to find the global optimal solution in multiple local solution spaces. Through the analysis of the experimental results of six data sets, compared with the traditional hyperparameter optimization method and a single swarm intelligence algorithm, the model using the hybrid algorithm has higher and better indicators. And, under the processing of the autoencoder, the performance of the model has been further improved.


Author(s):  
Mirta Fuentes-Ramos ◽  
Eddy Sánchez-DelaCruz ◽  
Iván-Vladimir Meza-Ruiz ◽  
Cecilia-Irene Loeza-Mejía

Neurodegenerative diseases affect a large part of the population in the world and also in Mexico, deteriorating gradually the quality of patients’ life. Therefore, it is important to diagnose them with a high degree of reliability. In order to solve it, various computational methods have been applied in the analysis of biomarkers of human gait. In this study, we propose employing the automatic model selection and hyperparameter optimization method that has not been addressed before for this problem. Our results showed highly competitive percentages of correctly classified instances when discriminating binary and multiclass sets of neurodegenerative diseases: Parkinson’s disease, Huntington’s disease, and Spinocerebellar ataxias.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8435
Author(s):  
Sebastian Blume ◽  
Tim Benedens ◽  
Dieter Schramm

Software sensors are playing an increasingly important role in current vehicle development. Such soft sensors can be based on both physical modeling and data-based modeling. Data-driven modeling is based on building a model purely on captured data which means that no system knowledge is required for the application. At the same time, hyperparameters have a particularly large influence on the quality of the model. These parameters influence the architecture and the training process of the machine learning algorithm. This paper deals with the comparison of different hyperparameter optimization methods for the design of a roll angle estimator based on an artificial neural network. The comparison is drawn based on a pre-generated simulation data set created with ISO standard driving maneuvers. Four different optimization methods are used for the comparison. Random Search and Hyperband are two similar methods based purely on randomness, whereas Bayesian Optimization and the genetic algorithm are knowledge-based methods, i.e., they process information from previous iterations. The objective function for all optimization methods consists of the root mean square error of the training process and the reference data generated in the simulation. To guarantee a meaningful result, k-fold cross-validation is integrated for the training process. Finally, all methods are applied to the predefined parameter space. It is shown that the knowledge-based methods lead to better results. In particular, the Genetic Algorithm leads to promising solutions in this application.


Author(s):  
Mohammad Masum ◽  
Hossain Shahriar ◽  
Hisham Haddad ◽  
Md Jobair Hossain Faruk ◽  
Maria Valero ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document