scholarly journals Molecular Modelling and Docking Experiments Examining the Interaction between SARS-CoV-2 Spike Glycoprotein and Neuronal Nicotinic Acetylcholine Receptors

Author(s):  
Konstantinos Farsalinos ◽  
Elias Eliopoulos ◽  
Demetres Leonidas ◽  
Georgios Papadopoulos ◽  
Socrates Tzartos ◽  
...  

While SARS-CoV-2 uses angiotensin converting enzyme 2 (ACE2) as the receptor for cell entry, it is important to examine for other potential interactions between the virus and other cell receptors. Based on the clinical observation of low smoking prevalence among hospitalized COVID-19 patients, we recently identified a “toxin-like” amino acid (aa) sequence on the receptor binding domain of the spike glycoprotein of SARS-CoV-2 (aa 375-390) with homology to a sequence of a snake venom toxin, which could interact with nicotinic acetylcholine receptors (nAChRs). We now present computational molecular modelling and docking experiments using 3D structures of the SARS-CoV-2 spike glycoprotein and the extracellular domain of the nAChR alpha9 subunit. We identified an interaction between the aa381-386 of the SARS-CoV-2 spike glycoprotein and the aa189-192 of the extracellular domain of the nAChR alpha9 subunit, a region which forms the core of the “toxin-binding site” of the nAChRs. The mode of interaction is very similar to the interaction between the alpha9 nAChR and alpha-bungarotoxin. A similar interaction was observed between the pentameric alpha7 AChR and the SARS-CoV-2 spike glycoprotein. Our findings support the hypothesis that severe COVID-19 may be associated with disruption of the nicotinic cholinergic system which could be caused by an interaction between SARS-CoV-2 and nAChRs.

2020 ◽  
Vol 21 (16) ◽  
pp. 5807 ◽  
Author(s):  
Konstantinos Farsalinos ◽  
Elias Eliopoulos ◽  
Demetres D. Leonidas ◽  
Georgios E. Papadopoulos ◽  
Socrates Tzartos ◽  
...  

While SARS-CoV-2 uses angiotensin converting enzyme 2 (ACE2) as the receptor for cell entry, it is important to examine other potential interactions between the virus and other cell receptors. Based on the clinical observation of low prevalence of smoking among hospitalized COVID-19 patients, we examined and identified a “toxin-like” amino acid (aa) sequence in the Receptor Binding Domain of the Spike Glycoprotein of SARS-CoV-2 (aa 375–390), which is homologous to a sequence of the Neurotoxin homolog NL1, one of the many snake venom toxins that are known to interact with nicotinic acetylcholine receptors (nAChRs). We present the 3D structural location of this “toxin-like” sequence on the Spike Glycoprotein and the superposition of the modelled structure of the Neurotoxin homolog NL1 and the SARS-CoV-2 Spike Glycoprotein. We also performed computational molecular modelling and docking experiments using 3D structures of the SARS-CoV-2 Spike Glycoprotein and the extracellular domain of the nAChR α9 subunit. We identified a main interaction between the aa 381–386 of the SARS-CoV-2 Spike Glycoprotein and the aa 189–192 of the extracellular domain of the nAChR α9 subunit, a region which forms the core of the “toxin-binding site” of the nAChRs. The mode of interaction is very similar to the interaction between the α9 nAChR and α-bungarotoxin. A similar interaction was observed between the pentameric α7 AChR chimera and SARS-CoV-2 Spike Glycoprotein. The findings raise the possibility that SARS-CoV-2 may interact with nAChRs, supporting the hypothesis of dysregulation of the nicotinic cholinergic system being implicated in the pathophysiology of COVID-19. Nicotine and other nicotinic cholinergic agonists may protect nAChRs and thus have therapeutic value in COVID-19 patients.


Marine Drugs ◽  
2022 ◽  
Vol 20 (1) ◽  
pp. 49
Author(s):  
William Kem ◽  
Kristin Andrud ◽  
Galen Bruno ◽  
Hong Xing ◽  
Ferenc Soti ◽  
...  

Nereistoxin (NTX) is a marine toxin isolated from an annelid worm that lives along the coasts of Japan. Its insecticidal properties were discovered decades ago and this stimulated the development of a variety of insecticides such as Cartap that are readily transformed into NTX. One unusual feature of NTX is that it is a small cyclic molecule that contains a disulfide bond. In spite of its size, it acts as an antagonist at insect and mammalian nicotinic acetylcholine receptors (nAChRs). The functional importance of the disulfide bond was assessed by determining the effects of inserting a methylene group between the two sulfur atoms, creating dimethylaminodithiane (DMA-DT). We also assessed the effect of methylating the NTX and DMA-DT dimethylamino groups on binding to three vertebrate nAChRs. Radioligand receptor binding experiments were carried out using washed membranes from rat brain and fish (Torpedo) electric organ; [3H]-cytisine displacement was used to assess binding to the predominantly high affinity alpha4beta2 nAChRs and [125I]-alpha-bungarotoxin displacement was used to measure binding of NTX and analogs to the alpha7 and skeletal muscle type nAChRs. While the two quaternary nitrogen analogs, relative to their respective tertiary amines, displayed lower α4β2 nAChR binding affinities, both displayed much higher affinities for the Torpedo muscle nAChR and rat alpha7 brain receptors than their respective tertiary amine forms. The binding affinities of DMA-DT for the three nAChRs were lower than those of NTX and MeNTX. An AChBP mutant lacking the C loop disulfide bond that would potentially react with the NTX disulfide bond displayed an NTX affinity very similar to the parent AChBP. Inhibition of [3H]-epibatidine binding to the AChBPs was not affected by exposure to NTX or MeNTX for up to 24 hr prior to addition of the radioligand. Thus, the disulfide bond of NTX is not required to react with the vicinal disulfide in the AChBP C loop for inhibition of [3H]-epibatidine binding. However, a reversible disulfide interchange reaction of NTX with nAChRs might still occur, especially under reducing conditions. Labeled MeNTX, because it can be readily prepared with high specific radioactivity and possesses relatively high affinity for the nAChR-rich Torpedo nAChR, would be a useful probe to detect and identify any nereistoxin adducts.


Author(s):  
Konstantinos Farsalinos ◽  
Elias Eliopoulos ◽  
Socrates Tzartos ◽  
Konstantinos Poulas

Smoking is a risk factor for respiratory infections and there is reasonable concern that it may affect COVID-19 susceptibility and severity. Recent studies have focused on the interaction between smoking (and nicotine) and ACE2 expression, suggesting that ACE2 up-regulation could contribute to enhanced viral cell entry. However, case series have shown that there is an unexpectedly low prevalence of smoking among hospitalized COVID-19 cases. Since early April, we were the first to hypothesize that dysfunction of the nicotinic cholinergic system (NCS) may be implicated in the pathophysiology of severe COVID-19. We recently reported that many of the clinical manifestations of severe COVID-19 could be explained by dysregulation of the NCS. In this study, we present an amino acid sequence in the receptor binding domain of the SARS-CoV-2 Spike glycoprotein which is homologous to a sequence of a snake venom toxin. We present the 3D structural location of this “toxin-like” sequence on the Spike Glycoprotein. These findings suggest that SARS-CoV-2 could potentially interact with acetylcholine receptors causing dysregulation of the NCS and the cholinergic anti-inflammatory pathway.


Sign in / Sign up

Export Citation Format

Share Document