rat cortical neurons
Recently Published Documents


TOTAL DOCUMENTS

624
(FIVE YEARS 55)

H-INDEX

60
(FIVE YEARS 5)

2021 ◽  
Vol 22 (23) ◽  
pp. 12770
Author(s):  
Annika Ahtiainen ◽  
Barbara Genocchi ◽  
Jarno M. A. Tanskanen ◽  
Michael T. Barros ◽  
Jari A. K. Hyttinen ◽  
...  

Astrocytes and neurons respond to each other by releasing transmitters, such as γ-aminobutyric acid (GABA) and glutamate, that modulate the synaptic transmission and electrochemical behavior of both cell types. Astrocytes also maintain neuronal homeostasis by clearing neurotransmitters from the extracellular space. These astrocytic actions are altered in diseases involving malfunction of neurons, e.g., in epilepsy, Alzheimer’s disease, and Parkinson’s disease. Convulsant drugs such as 4-aminopyridine (4-AP) and gabazine are commonly used to study epilepsy in vitro. In this study, we aim to assess the modulatory roles of astrocytes during epileptic-like conditions and in compensating drug-elicited hyperactivity. We plated rat cortical neurons and astrocytes with different ratios on microelectrode arrays, induced seizures with 4-AP and gabazine, and recorded the evoked neuronal activity. Our results indicated that astrocytes effectively counteracted the effect of 4-AP during stimulation. Gabazine, instead, induced neuronal hyperactivity and synchronicity in all cultures. Furthermore, our results showed that the response time to the drugs increased with an increasing number of astrocytes in the co-cultures. To the best of our knowledge, our study is the first that shows the critical modulatory role of astrocytes in 4-AP and gabazine-induced discharges and highlights the importance of considering different proportions of cells in the cultures.


2021 ◽  
Author(s):  
Max Hofmann ◽  
Lucas Biller ◽  
Uwe Michel ◽  
Mathias Bähr ◽  
Jan Christoph Koch

The axonal cytoskeleton is organized in a highly periodic structure, the membrane-associated periodic skeleton (MPS), which is essential to maintain the structure and function of the axon. Here, we use stimulated emission depletion microscopy (STED) of primary rat cortical neurons in microfluidic chambers to analyze the temporal and spatial sequence of MPS formation at the distal end of growing axons and during regeneration after axotomy. We demonstrate that the MPS does not extend continuously into the growing axon but develops from patches of periodic β-spectrin II arrangements that grow and coalesce into a continuous scaffold. We estimate that the underlying sequence of nucleation, elongation, and subsequent coalescence of periodic β-spectrin II patches takes around 15 hours. Strikingly, we find that development of the MPS occurs faster in regenerating axons after axotomy and note marked differences in the morphology of the growth cone and adjacent axonal regions between regenerating and unlesioned axons. Moreover, we find that inhibition of the spectrin-cleaving enzyme calpain accelerates MPS formation in regenerating axons and increases the number of regenerating axons after axotomy. Taken together, we provide here a detailed nanoscale analysis of MPS development in growing axons.


Biology ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 948
Author(s):  
Hui Peng ◽  
Brock T. Harvey ◽  
Christopher I. Richards ◽  
Kimberly Nixon

Microglia act as the immune cells of the central nervous system (CNS). They play an important role in maintaining brain homeostasis but also in mediating neuroimmune responses to insult. The interactions between neurons and microglia represent a key process for neuroimmune regulation and subsequent effects on CNS integrity. However, the molecular mechanisms of neuron-glia communication in regulating microglia function are not fully understood. One recently described means of this intercellular communication is via nano-sized extracellular vesicles (EVs) that transfer a large diversity of molecules between neurons and microglia, such as proteins, lipids, and nucleic acids. To determine the effects of neuron-derived EVs (NDEVs) on microglia, NDEVs were isolated from the culture supernatant of rat cortical neurons. When NDEVs were added to primary cultured rat microglia, we found significantly improved microglia viability via inhibition of apoptosis. Additionally, application of NDEVs to cultured microglia also inhibited the expression of activation surface markers on microglia. Furthermore, NDEVs reduced the LPS-induced proinflammatory response in microglia according to reduced gene expression of proinflammatory cytokines (TNF-α, IL-6, MCP-1) and iNOS, but increased expression of the anti-inflammatory cytokine, IL-10. These findings support that neurons critically regulate microglia activity and control inflammation via EV-mediated neuron–glia communication. (Supported by R21AA025563 and R01AA025591).


2021 ◽  
pp. 096032712110419
Author(s):  
Yueqiang Hu ◽  
Lin Wu ◽  
Lingfei Jiang ◽  
Ni Liang ◽  
Xiaomin Zhu ◽  
...  

Background: Alzheimer’s disease (AD) has affected numerous elderly individuals worldwide. Panax notoginseng has been shown to ameliorate AD symptoms, and notoginsenoside R2 is a key saponin identified in this plant. Purpose: In the current study, we aimed to explore whether notoginsenoside R2 could improve the prognosis of AD. Methods: Herein, primary rat cortical neurons were isolated and they were treated with amyloid beta-peptide (A β) 25–35 oligomers. Cellular apoptosis was examined via flow cytometry and Western blotting. miR-27a and SOX8 mRNA expression levels were quantified by quantitative reverse transcription-polymerase chain reaction. Furthermore, the interaction between miR-27a and SOX8 was investigated by utilizing a dual-luciferase reporter assay. Finally, an AD mouse model was established to validate the in vitro findings. Results: Notoginsenoside R2 alleviated A β25-35-triggered neuronal apoptosis and inflammation. During this process, miR-27a expression was decreased by notoginsenoside R2, and miR-27a negatively modulated SOX8 expression. Furthermore, activation of SOX8 upregulated β-catenin expression, thus suppressing apoptosis and neuroinflammation. Conclusions: Our animal experiments revealed that notoginsenoside R2 enhanced the cognitive function of AD mice and inhibited neuronal apoptosis. Notoginsenoside R2 ameliorated AD symptoms by reducing neuronal apoptosis and inflammation, thus suggesting a novel direction for AD pharmacotherapy.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0256728
Author(s):  
Shoko Hososhima ◽  
Hideki Kandori ◽  
Satoshi P. Tsunoda

KR2 from marine bacteria Krokinobacter eikastus is a light-driven Na+ pumping rhodopsin family (NaRs) member that actively transports Na+ and/or H+ depending on the ionic state. We here report electrophysiological studies on KR2 to address ion-transport properties under various electrochemical potentials of Δ[Na+], ΔpH, membrane voltage and light quality, because the contributions of these on the pumping activity were less understood so far. After transient expression of KR2 in mammalian cultured cells (ND7/23 cells), photocurrents were measured by whole-cell patch clamp under various intracellular Na+ and pH conditions. When KR2 was continuously illuminated with LED light, two distinct time constants were obtained depending on the Na+ concentration. KR2 exhibited slow ion transport (τoff of 28 ms) below 1.1 mM NaCl and rapid transport (τoff of 11 ms) above 11 mM NaCl. This indicates distinct transporting kinetics of H+ and Na+. Photocurrent amplitude (current density) depends on the intracellular Na+ concentration, as is expected for a Na+ pump. The M-intermediate in the photocycle of KR2 could be transferred into the dark state without net ion transport by blue light illumination on top of green light. The M intermediate was stabilized by higher membrane voltage. Furthermore, we assessed the optogenetic silencing effect of rat cortical neurons after expressing KR2. Light power dependency revealed that action potential was profoundly inhibited by 1.5 mW/mm2 green light illumination, confirming the ability to apply KR2 as an optogenetics silencer.


2021 ◽  
Vol 72 (1) ◽  
pp. 123-134
Author(s):  
Jingjing Tan ◽  
Manoj Kumar Yadav ◽  
Sushma Devi ◽  
Manish Kumar

Abstract In this study, the neuroprotective potential of arbutin (100 µmol L−1) pre-treatment and post-treatment against oxygen/ glucose deprivation (OGD) and reoxygenation (R) induced ischemic injury in cultured rat cortical neurons was explored. The OGD (60 min) and reoxygenation (24 h) treatment significantly (p < 0.001) compromised the antioxidant defence in cultured neurons. Subsequently, an increase (p < 0.001) in lipid peroxidation and inflammatory cytokines (tumour necrosis factor-α and nuclear factor kappa-B) declined neuron survival. In pre- and post-condition experiments, treatment with arbutin enhanced both survival (p < 0.01) and integrity (p < 0.05) of cultured neurons. Results showed that arbutin protects (p < 0.05) against peroxidative changes, inflammation, and enhanced the antioxidant activity (e.g., glutathione, superoxide dismutase and catalase) in cultured neurons subjected to OGD/R. It can be inferred that arbutin could protect against ischemic injuries and stroke. The anti-ischemic activity of arbutin can arrest post-stroke damage to the brain.


2021 ◽  
Vol 22 (12) ◽  
pp. 6577
Author(s):  
Carlos Alberto Castillo ◽  
Inmaculada Ballesteros-Yáñez ◽  
David Agustín León-Navarro ◽  
José Luis Albasanz ◽  
Mairena Martín

The amyloid β peptide (Aβ) is a central player in the neuropathology of Alzheimer’s disease (AD). The alteration of Aβ homeostasis may impact the fine-tuning of cell signaling from the very beginning of the disease, when amyloid plaque is not deposited yet. For this reason, primary culture of rat cortical neurons was exposed to Aβ25-35, a non-oligomerizable form of Aβ. Cell viability, metabotropic glutamate receptors (mGluR) and adenosine receptors (AR) expression and signalling were assessed. Aβ25-35 increased mGluR density and affinity, mainly due to a higher gene expression and protein presence of Group I mGluR (mGluR1 and mGluR5) in the membrane of cortical neurons. Intriguingly, the main effector of group I mGluR, the phospholipase C β1 isoform, was less responsive. Also, the inhibitory action of group II and group III mGluR on adenylate cyclase (AC) activity was unaltered or increased, respectively. Interestingly, pre-treatment of cortical neurons with an antagonist of group I mGluR reduced the Aβ25-35-induced cell death. Besides, Aβ25-35 increased the density of A1R and A2AR, along with an increase in their gene expression. However, while A1R-mediated AC inhibition was increased, the A2AR-mediated stimulation of AC remained unchanged. Therefore, one of the early events that takes place after Aβ25-35 exposure is the up-regulation of adenosine A1R, A2AR, and group I mGluR, and the different impacts on their corresponding signaling pathways. These results emphasize the importance of deciphering the early events and the possible involvement of metabotropic glutamate and adenosine receptors in AD physiopathology.


2021 ◽  
Author(s):  
Avi Kumar ◽  
Thekla Cordes ◽  
Anna E Thalacker-Mercer ◽  
Ana M Pajor ◽  
Anne N Murphy ◽  
...  

Citrate lies at a critical node of metabolism linking tricarboxylic acid metabolism and fatty acid synthesis via acetyl-coenzyme A. Recent studies have linked the sodium citrate transporter (NaCT), encoded by SLC13A5, to dysregulated hepatic metabolism and pediatric epilepsy. To examine how NaCT-mediated citrate metabolism contributes to the pathophysiology of these diseases we applied 13C isotope tracing to SLC13A5-deficient hepatocellular carcinoma (HCC) cell lines and primary rat cortical neurons. Exogenous citrate contributed to intermediary metabolism at appreciable levels only under hypoxic conditions. In the absence of glutamine, citrate supplementation increased de novo lipogenesis and growth of HCC cells. Knockout of SLC13A5 in Huh7 cells compromised citrate uptake and catabolism. Citrate supplementation rescued Huh7 cell viability in response to glutamine deprivation and Zn2+ treatment, and these effects were mitigated by NaCT deficiency. Collectively, these findings demonstrate that NaCT-mediated citrate uptake is metabolically important under nutrient limited conditions and may facilitate resistance to metal toxicity.


Sign in / Sign up

Export Citation Format

Share Document