macrophage polarization
Recently Published Documents


TOTAL DOCUMENTS

2899
(FIVE YEARS 1760)

H-INDEX

95
(FIVE YEARS 21)

2022 ◽  
Vol 8 ◽  
Author(s):  
Zhi Li ◽  
Miao Nie ◽  
Liming Yu ◽  
Dengshun Tao ◽  
Qiang Wang ◽  
...  

Myocardial infarction (MI) is regarded as a serious ischemic heart disease on a global level. The current study set out to explore the mechanism of the Notch signaling pathway in the regulation of fibrosis remodeling after the occurrence of MI. First, experimental mice were infected with recombination signal binding protein J (RBP-J) shRNA and empty adenovirus vector, followed by the establishment of MI mouse models and detection of cardiac function. After 4 weeks of MI, mice in the sh-RBP-J group were found to exhibit significantly improved cardiac function relative to the sh-NC group. Moreover, knockdown of RBP-J brought about decreased infarct area, promoted cardiac macrophages M2 polarization, reduced cardiac fibrosis, and further decreased transcription and protein expressions of inflammatory factors and fibrosis-related factors. Furthermore, downregulation of cylindromatosis (CYLD) using si-CYLD reversed the results that knockdown of RBP-J inhibited fibrogenesis and the release of inflammatory factors. Altogether, our findings indicated that the blockade of Notch signaling promotes M2 polarization of cardiac macrophages and improves cardiac function by inhibiting the imbalance of fibrotic remodeling after MI.


Author(s):  
Weibin Ruan ◽  
Xinyun Ji ◽  
Yating Qin ◽  
Xinxin Zhang ◽  
Xiaoning Wan ◽  
...  

Sepsis is a dysregulated systemic inflammatory response that often leads to cardiac dysfunction, which is termed sepsis-induced cardiomyopathy (SIC). Harmine, a natural β-carboline alkaloid compound, has been shown to exert pharmacological effects on several diseases. Here, we investigated whether harmine protected against SIC development and the underlying mechanisms. In vitro, the expression of the M1 phenotype markers iNOS and COX-2 was increased in RAW 264.7 cells stimulated with lipopolysaccharide (LPS), but this effect was reversed by the harmine intervention. Furthermore, LPS-induced increases in the levels of inflammatory cytokines, including IL-1β, IL-6, TNF-α, iNOS, COX-2, PGE2 and TXB2, generated by macrophages were suppressed when the cells were pretreated with harmine. Meanwhile, our findings showed that harmine administration effectively attenuated inflammation and apoptosis in H9c2 cells in the proinflammatory environment produced by macrophages, as evidenced by reductions in NLRP3 and cleaved caspase 3 levels and the p-NF-κB/NF-κB ratio. The western blot results indicated that the mechanisms underlying harmine-mediated inhibition of M1 polarization might be associated with suppression of STAT1/3, NF-κB and MAPK activation. Furthermore, an LPS injection induced cardiac dysfunction and decreased the survival rate of mice, which were alleviated by harmine treatment, and the relevant mechanism was possibly attributed to a drug-induced attenuation of the inflammatory and apoptotic processes in cardiomyocytes. Collectively, these results implied that harmine treatment protected against SIC by suppressing M1 phenotypic polarization and inflammation in macrophages.


2022 ◽  
Vol 8 ◽  
Author(s):  
Lei Zhao ◽  
Fengfeng Lv ◽  
Ye Zheng ◽  
Liqiu Yan ◽  
Xufen Cao

Objective: Advancing age is a major risk factor of atherosclerosis (AS). Nevertheless, the mechanism underlying this phenomenon remains indistinct. Herein, this study conducted a comprehensive analysis of the biological implications of aging-related genes in AS.Methods: Gene expression profiles of AS and non-AS samples were curated from the GEO project. Differential expression analysis was adopted for screening AS-specific aging-related genes. LASSO regression analysis was presented for constructing a diagnostic model, and the discriminatory capacity was evaluated with ROC curves. Through consensus clustering analysis, aging-based molecular subtypes were conducted. Immune levels were estimated based on the expression of HLAs, immune checkpoints, and immune cell infiltrations. Key genes were then identified via WGCNA. The effects of CEBPB knockdown on macrophage polarization were examined with western blotting and ELISA. Furthermore, macrophages were exposed to 100 mg/L ox-LDL for 48 h to induce macrophage foam cells. After silencing CEBPB, markers of cholesterol uptake, esterification and hydrolysis, and efflux were detected with western blotting.Results: This study identified 28 AS-specific aging-related genes. The aging-related gene signature was developed, which could accurately diagnose AS in both the GSE20129 (AUC = 0.898) and GSE43292 (AUC = 0.685) datasets. Based on the expression profiling of AS-specific aging-related genes, two molecular subtypes were clustered, and with diverse immune infiltration features. The molecular subtype–relevant genes were obtained with WGCNA, which were markedly associated with immune activation. Silencing CEBPB triggered anti-inflammatory M2-like polarization and suppressed foam cell formation.Conclusion: Our findings suggest the critical implications of aging-related genes in diagnosing AS and modulating immune infiltrations.


2022 ◽  
Vol 12 ◽  
Author(s):  
Fenglian Yan ◽  
Dalei Cheng ◽  
Haiyan Wang ◽  
Min Gao ◽  
Junfeng Zhang ◽  
...  

Immune-mediated hepatic injury plays a key role in the initiation and pathogenesis of diverse liver diseases. However, treatment choice for immune-mediated hepatic injury remains limited. Corilagin, a natural ellagitannin extracted from various traditional Chinese medicines, has been demonstrated to exhibit multiple pharmacological activities, such as anti-inflammatory, anti-tumor, and hepatoprotective properties. The present study aimed to investigate the effects of corilagin on immune-mediated hepatic injury using a murine model of concanavalin A (Con A)-induced hepatitis, which is well-characterized to study acute immune-mediated hepatitis. Herein, mice were administered corilagin (25 mg/kg) intraperitoneally twice at 12 h intervals, and 1 h later, the mice were challenged with Con A (20 mg/kg body weight); serum and liver samples were collected after 12 h. The results showed that corilagin significantly increased the survival of mice and reduced serum alanine transaminase (ALT) and aspartate aminotransferase (AST) levels. In addition, corilagin markedly improved histopathological damage, hepatocyte apoptosis, and oxidative stress in the liver. The activation of M1 macrophages in the hepatic mononuclear cells was also significantly reduced compared with that in the control group. The expression of M1 macrophage-associated proinflammatory cytokines and genes, including interleukin (IL)-6, IL-12, and inducible nitric oxide synthase (iNOS), was also decreased after corilagin treatment. Finally, the results demonstrated that corilagin regulated macrophage polarization by modulating the mitogen-activated protein kinases (MAPK), nuclear factor (NF)-κB, and interferon regulatory factor (IRF) signaling pathways. Thus, the findings indicate that corilagin protects mice from Con A-induced immune-mediated hepatic injury by limiting M1 macrophage activation via the MAPK, NF-κB, and IRF signaling pathways, suggesting corilagin as a possible treatment choice for immune-mediated hepatic injury.


2022 ◽  
Author(s):  
Pengcheng Yan ◽  
Xiaoning Song ◽  
Joanne Tran ◽  
Runfa Zhou ◽  
Xinran Cao ◽  
...  

Abstract Viral myocarditis (VMC), which is most prevalently caused by Coxsackievirus B3 (CVB3) infection, is a serious clinical condition characterized by cardiac inflammation. Dapagliflozin, a kind of sodium glucose co-transporters 2(SGLT-2) inhibitor, exhibited protective effects on plenty of inflammatory diseases, while its effect on viral myocarditis has not been studied. Recently we found the protective effect of dapagliflozin on VMC. After CVB3 infection, dapagliflozin were given orally to Balb/c male mice for 8 days and then the severity of myocarditis was assessed. Our results indicated that dapagliflozin significantly alleviated the severity of viral myocarditis, elevated the survival rate, and ameliorated cardiac function. Besides, dapagliflozin can decrease the level of proinflammatory cytokines included IL-1β, IL-6, TNF-α. Furthermore, dapagliflozin can inhibit macrophages differentiate to classically activated macrophages (M1) in cardiac tissue and activate the Stat3 signal pathway which is reported to promote polarization of the alternatively activated macrophage (M2). In conclusion, our study demonstrates that dapagliflozin alleviates myocardial inflammation by regulating the macrophage polarization and Stat3-related pathways in coxsackie virus B3-induced acute viral myocarditis.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Jingjin Liu ◽  
Michael Veldeman ◽  
Anke Höllig ◽  
Kay Nolte ◽  
Lisa Liebenstund ◽  
...  

AbstractIn a previous study from our group, argon has shown to significantly attenuate brain injury, reduce brain inflammation and enhance M2 microglia/macrophage polarization until 7 days after ischemic stroke. However, the long-term effects of argon have not been reported thus far. In the present study, we analyzed the underlying neuroprotective effects and potential mechanisms of argon, up to 30 days after ischemic stroke. Argon administration with a 3 h delay after stroke onset and 1 h after reperfusion demonstrated long-term neuroprotective effect by preserving the neurons at the ischemic boundary zone 30 days after stroke. Furthermore, the excessive microglia/macrophage activation in rat brain was reduced by argon treatment 30 days after ischemic insult. However, long-lasting neurological improvement was not detectable. More sensorimotor functional measures, age- and disease-related models, as well as further histological and molecular biological analyses will be needed to extend the understanding of argon’s neuroprotective effects and mechanism of action after ischemic stroke.


2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Yujie Xing ◽  
Shuo Pan ◽  
Ling Zhu ◽  
Qianwei Cui ◽  
Zhiguo Tang ◽  
...  

Objective. The objective of this study was to investigate the involved mechanisms of advanced glycation end product- (AGE-) exacerbated atherosclerosis (AS). Methods. Toll-like receptor 4 (TLR4) inhibitor was administrated to type 2 diabetes mellitus (T2DM) AS rats. Atherosclerotic plaque, M1 macrophage infiltration, and VSMCs phenotypes were evaluated. AGE-exposed primary macrophages were treated with specific siRNAs knocking down receptor for AGEs (RAGE) and TLR4. Phenotypes of M1 macrophage and VSMCs were identified by fluorescent stains. Contact and noncontact coculture models were established. VSMCs and macrophages were cocultured in these models. ELISA was used to detect inflammatory cytokine concentrations. Relative mRNA expression levels were determined by real-time PCR. Relative protein expression and phosphorylation levels were evaluated by Western blots assays. Results. TLR4 inhibitor treatment significantly reduced arterial stenosis, infiltration of M1 polarized macrophages, and contractile-to-synthetic phenotype conversion of VSMCs in DM AS animals. RAGE and TLR4 silencing dramatically reduced AGE-induced macrophage M1 polarization, inflammatory cytokine secretion, and RAGE/TLR4/forkhead box protein C2 (FOXC2)/signaling which inhibited delta-like ligand 4 (Dll4) expression in macrophages. AGE-treated macrophages induced VSMC phenotypic conversion via activating Notch pathway in a contact coculture model rather than a noncontact model. The VSMC phenotypic conversion induction capability of macrophages was attenuated by RAGE and TLR4 silencing. Conclusions. AGEs induced activation of RAGE/TLR4/FOXC2 signaling, which featured macrophage with Dll4 high expression during M1 polarization. These macrophages promoted contractile-synthetic phenotypic conversion of VSMCs through the Dll4/Notch pathway after direct cell-to-cell contacts.


Sign in / Sign up

Export Citation Format

Share Document