scholarly journals Global Dynamics of a Higher Order Difference Equation with a Quadratic Term

Author(s):  
Erkan Taşdemir

In this paper, we investigate the dynamics of following higher order difference equation x_{n+1}=A+B((x_{n})/(x_{n-m}²)) with A,B and initial conditions are positive numbers, and m∈{2,3,⋯}. Especially we study the boundedness, periodicity, semi-cycles, global asymptotically stability and rate of convergence of solutions of related higher order difference equations.

Author(s):  
Erkan Taşdemir

In this paper, we investigate the dynamics of following higher order difference equation x_{n+1}=A+B((x_{n})/(x_{n-m}²)) with A,B and initial conditions are positive numbers. Especially we study the boundedness, periodicity, global asymptotically stability and rate of convergence of related higher order difference equations.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Emin Bešo ◽  
Senada Kalabušić ◽  
Naida Mujić ◽  
Esmir Pilav

AbstractWe consider the second-order rational difference equation $$ {x_{n+1}=\gamma +\delta \frac{x_{n}}{x^{2}_{n-1}}}, $$xn+1=γ+δxnxn−12, where γ, δ are positive real numbers and the initial conditions $x_{-1}$x−1 and $x_{0}$x0 are positive real numbers. Boundedness along with global attractivity and Neimark–Sacker bifurcation results are established. Furthermore, we give an asymptotic approximation of the invariant curve near the equilibrium point.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Toufik Khyat ◽  
M. R. S. Kulenović

In this paper, certain dynamic scenarios for general competitive maps in the plane are presented and applied to some cases of second-order difference equation xn+1=fxn,xn−1, n=0,1,…, where f is decreasing in the variable xn and increasing in the variable xn−1. As a case study, we use the difference equation xn+1=xn−12/cxn−12+dxn+f, n=0,1,…, where the initial conditions x−1,x0≥0 and the parameters satisfy c,d,f>0. In this special case, we characterize completely the global dynamics of this equation by finding the basins of attraction of its equilibria and periodic solutions. We describe the global dynamics as a sequence of global transcritical or period-doubling bifurcations.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
S. Jašarević Hrustić ◽  
M. R. S. Kulenović ◽  
M. Nurkanović

We present a complete local dynamics and investigate the global dynamics of the following second-order difference equation:xn+1=Axn2+Exn-1+F/axn2+exn-1+f,  n=0,1,2,…, where the parametersA,E,F,a,e, andfare nonnegative numbers with conditionA+E+F>0,a+e+f>0, and the initial conditionsx-1,x0are arbitrary nonnegative numbers such thataxn2+exn-1+f>0,  n=0,1,2,….


Author(s):  
Robert Stegliński

AbstractIn this work, we establish optimal Lyapunov-type inequalities for the second-order difference equation with p-Laplacian $$\begin{aligned} \Delta (\left| \Delta u(k-1)\right| ^{p-2}\Delta u(k-1))+a(k)\left| u(k)\right| ^{p-2}u(k)=0 \end{aligned}$$ Δ ( Δ u ( k - 1 ) p - 2 Δ u ( k - 1 ) ) + a ( k ) u ( k ) p - 2 u ( k ) = 0 with Dirichlet, Neumann, mixed, periodic and anti-periodic boundary conditions.


Filomat ◽  
2018 ◽  
Vol 32 (18) ◽  
pp. 6203-6210
Author(s):  
Vahidin Hadziabdic ◽  
Midhat Mehuljic ◽  
Jasmin Bektesevic ◽  
Naida Mujic

In this paper we will present the Julia set and the global behavior of a quadratic second order difference equation of type xn+1 = axnxn-1 + ax2n-1 + bxn-1 where a > 0 and 0 ? b < 1 with non-negative initial conditions.


Sign in / Sign up

Export Citation Format

Share Document