scholarly journals On L2-dissipativity of a linearized difference scheme on staggered meshes with a quasi-hydrodynamic regularization for 1D barotropic gas dynamics equations

2021 ◽  
pp. 1-27
Author(s):  
Alexander Anatolievich Zlotnik ◽  
Timofey Alexandrovich Lomonosov

We study an explicit two-level finite difference scheme on staggered meshes, with a quasi-hydrodynamic regularization, for 1D barotropic gas dynamics equations. We derive necessary conditions and sufficient conditions close to each other for L<sup>2</sup>-dissipativity of solutions to the Cauchy problem for its linearization on a constant solution, for any background Mach number M. We apply the spectral approach and analyze matrix inequalities containing symbols of symmetric matrices of convective and regularizing terms. We consider the cases where either the artificial viscosity coefficient or the physical viscosity one is used. A comparison with the spectral von Neumann condition is also given for M=0.

2018 ◽  
Vol 73 (4) ◽  
pp. 143-149
Author(s):  
A. V. Zvyagin ◽  
G. M. Kobelkov ◽  
M. A. Lozhnikov

Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2184
Author(s):  
Alexander Zlotnik

We deal with 2D and 3D barotropic gas dynamics system of equations with two viscous regularizations: so-called quasi-gas dynamics (QGD) and quasi-hydrodynamics (QHD) ones. The system is linearized on a constant solution with any velocity, and an explicit two-level in time and symmetric three-point in each spatial direction finite-difference scheme on the uniform rectangular mesh is considered for the linearized system. We study L2-dissipativity of solutions to the Cauchy problem for this scheme by the spectral method and present a criterion in the form of a matrix inequality containing symbols of symmetric matrices of convective and regularizing terms. Analyzing these inequality and matrices, we also derive explicit sufficient conditions and necessary conditions in the Courant-type form which are rather close to each other. For the QHD regularization, such conditions are derived for the first time in 2D and 3D cases, whereas, for the QGD regularization, they improve those that have recently been obtained. Explicit formulas for a scheme parameter that guarantee taking the maximal time step are given for these conditions. An important moment is a new choice of an “average” spatial mesh step ensuring the independence of the conditions from the ratios of the spatial mesh steps and, for the QGD regularization, from the Mach number as well.


2019 ◽  
Vol 24 (2) ◽  
pp. 179-194 ◽  
Author(s):  
Alexander Zlotnik ◽  
Timofey Lomonosov

An entropy dissipative spatial discretization has recently been constructed for the multidimensional gas dynamics equations based on their preliminary parabolic quasi-gasdynamic (QGD) regularization. In this paper, an explicit finite-difference scheme with such a discretization is verified on several versions of the 1D Riemann problem, both well-known in the literature and new. The scheme is compared with the previously constructed QGD-schemes and its merits are noticed. Practical convergence rates in the mesh L1-norm are computed. We also analyze the practical relevance in the nonlinear statement as the Mach number grows of recently derived necessary conditions for L2-dissipativity of the Cauchy problem for a linearized QGD-scheme.


2018 ◽  
Vol 13 (2) ◽  
pp. 22 ◽  
Author(s):  
A. Chaiyasena ◽  
W. Worapitpong ◽  
S.V. Meleshko

Generalized simple waves of the gas dynamics equations in Lagrangian and Eulerian descriptions are studied in the paper. As in the collision of a shock wave and a rarefaction wave, a flow becomes nonisentropic. Generalized simple waves are applied to describe such flows. The first part of the paper deals with constructing a solution describing their adjoinment through a shock wave in Eulerian coordinates. Even though the Eulerian form of the gas dynamics equations is most frequently used in applications, there are advantages for some problems concerning the gas dynamics equations in Lagrangian coordinates, for example, of being able to be reduced to an Euler–Lagrange equation. Through the technique of differential constraints, necessary and sufficient conditions for the existence of generalized simple waves in the Lagrangian description are provided in the second part of the paper.


2010 ◽  
Vol 45 (4) ◽  
pp. 517-536
Author(s):  
V. S. Galkin ◽  
S. A. Losev

Sign in / Sign up

Export Citation Format

Share Document