METHOD DEVELOPMENT AND VALIDATION FOR THE DETERMINATION OF RESIDUAL SOLVENTS IN OXFENDAZOLE API BY USING HEAD SPACE GAS CHROMATOGRAPHY

Author(s):  
Dr. K. Basavaiah
Author(s):  
Sanapala Srinivasa Rao ◽  
A. Vijayalakshmi

Residual solvents in Pharmaceuticals are termed as organic volatile impurities. These are the chemicals that are used in the manufacture of drug substance or excipients or use in the preparation of final formulation. Most of the available methods use liquid chromatography which could be expensive and time consuming. Hence, an analytical methodology was developed for the quantification of residual solvents in Glipizide using a headspace gas chromatography (HSGC) with the help of flame ionization detector (FID). Methanol, acetone and dimethyl formamide as residual solvents were determined in Glipizide. Analysis was performed by headspace GC/FID method on Auto system- HS40. Nitrogen was used as a carrier gas and the separation of residual solvents was achieved by DB-Wax 0.25mm, 0.3mcm column. The thermostat temperature was 115 °C for 40 minutes for each vial. % RSD for nine injections obtained are in acceptance criteria. The correlation coefficient R2 obtained greater than 0.99. The method parameters were validated includes specificity, limit of detection and quantification, accuracy, linearity, precision, and robustness. According to the International Conference on Harmonization (ICH) guidelines, a new simple, specific, accurate and precise method was developed and validated.


2019 ◽  
Vol 15 (5) ◽  
pp. 591-598 ◽  
Author(s):  
Haitham Alrabiah ◽  
Ahmed Bakheit ◽  
Sabray Attia ◽  
Gamal A.E. Mostafa

Background: Conivaptan inhibits two of vasopressin receptor (vasopressin receptor V1a and V2). Conivaptan is used for the treatment of hyponatremia, and in some instances, for the treatment of the heart failure. Methods: The present study aimed to develop a simple, sensitive, and accurate HPLC with ultraviolet detection for the assay of conivaptan (CON) in mouse plasma using bisoprolol as internal standard (IS). A precipitation procedure was used to extract CON and the IS from the mouse plasma. CON was chromatographically separated using a C18 analytical column at 25°C. The separation was carried out using a mixture of phosphate buffer (50 mM): acetonitrile (60: 40, v/v, pH 4.5) with a flow rate of 1.0 mL/min and detection was performed at 240 nm. Results: The assay was validated according to the US Food and Drug (FDA) guidelines. The method demonstrated linearity over a concentration range of 150 - 2000 ng/mL (correlation coefficient: r 2 = 0.9985). The mean recovery of CON from the mouse plasma was 101.13%. All validation parameters for CON were within the acceptable range. Conclusion: The investigated method has been shown to be suitable for estimating the CON in plasma samples, and this method is sensitive and highly selective, allowing the estimation of its concentrations up to the nano-scale. The suggested method was successfully used in a pharmacokinetic study of CON in mouse plasma.


Sign in / Sign up

Export Citation Format

Share Document