metformin hcl
Recently Published Documents


TOTAL DOCUMENTS

130
(FIVE YEARS 45)

H-INDEX

16
(FIVE YEARS 3)

Macromol ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 1-19
Author(s):  
Amol Batra ◽  
Fengyuan Yang ◽  
Michael Kogan ◽  
Anthony Sosnowik ◽  
Courtney Usher ◽  
...  

High-molecular-weight hypromellose (HPMC) and hydroxypropyl cellulose (HPC) are widely known, extended-release polymers. Conventional high-molecular-weight HPMCs are preferred in extended-release applications but not widely used in twin-screw melt granulation due to processability difficulties at low operating temperatures and potential drug degradation if high processing temperatures are used. Conversely, high-molecular-weight grade HPC (Klucel®) can be used in melt granulation processes. The purpose of this study was to evaluate the processability and dissolution behavior of HPC GXF ((Klucel® GXF) and a recently introduced type of hot-melt extrudable HPMC (Affinisol®) in extended-release metformin hydrochloride formulations using twin-screw melt granulation. Powder blends were prepared with 75% w/w metformin HCl and 25% w/w polymeric binder. Blends were granulated at processing temperatures of 160, 140, 120 and 100 °C. HPMC HME 4M (Affinisol® 4M) provided a fine powder, indicating minimum granulation at processing temperatures lower than 160 °C, and the tablets obtained with these granules capped during tableting. In contrast, acceptable tablets could be obtained with HPC GXF at all processing temperatures. Rheological studies including capillary rheometry to measure steady shear rate viscosity, and rotational rheometry to obtain time and temperature superposition data, showed that HPC GXF had a greater thermoplasticity than HPMC HME 4M, which made granulation possible with HPC GXF at low temperatures. Tablets compressed with granules obtained at 160 °C with both binders showed comparable dissolution profiles. High-molecular-weight HPC GXF provided a better processability at low temperatures and adequate tablet strength for the melt granulation of metformin HCl.


Author(s):  
Darshak Patel ◽  
Ujashkumar Shah ◽  
Jayvadan Patel ◽  
Darshana Patel ◽  
Pavan Patel

Aims: Metformin HCl, Dapagliflozin and Saxagliptin is a new drug combination for the treatment of Diabetes Mellitus which is one of the oldest and lethal diseases of mankind. Aim of the research work was to develop and validate novel, rapid, sensitive, specific, robust stability indicating analytical method for simultaneous estimation of: Metformin HCl, Dapagliflozin and Saxagliptin in pharmaceutical dosage form as fixed dose formulation. Study Design: Method development and validation was performed as recommended in ICH guideline “Validation of analytical procedures: Test and Methodology Q2 (R1)”. Methodology: Method develop with chromatographic parameters as C18 column (250mm×4.6 mm, 5mm particle size), HPLC system with PDA detector and mobile phase contained a mixture of Phosphate Buffer pH 3.5 and Acetonitrile (80:20 v/v) + 1 ml triethylamine per 100 ml mobile phase. The flow rate was set to 1 ml/min with responses measured at 265 nm, injection volume was 20 µl, and run time of 15 mins. Results: The retention time of Metformin HCl, Dapagliflozin and Saxagliptin was 5.8 min, 6.8 mins and 8.4 min respectively with resolution of 3.5 between Metformin HCl and Dapagliflozin and 4.5 between Dapagliflozin and Saxagliptin. Linearity was established in the range of 250-1500 µg/ml for Metformin HCl, 1.25-7.5 µg/ml for Dapagliflozin and Saxagliptin with correlation coefficients more than 0.999. The percentage recoveries were between 98.39-101.66 for Metformin HCl, 99.01-101.77 for Dapagliflozin and 98.88-101.87 for Saxagliptin Validation parameters were evaluated according to the International Conference on Harmonization (ICH) Q2 R1 guidelines. The forced degradation studies were performed by using HCl, NaOH, H2O2, thermal and UV Radiation. The developed method was successfully applied for the quantification and hyphenated instrumental analysis. Conclusion: Significance of developed method is that it can be utilize for routine or unknown sample analysis of assay of Metformin HCl, Dapagliflozin and Saxagliptin in pharmaceutical dosage form developed by various Pharmaceutical Industry.


Author(s):  
Darshak Patel ◽  
Ujashkumar Shah ◽  
Jayvadan Patel ◽  
Hirak Joshi ◽  
Darshana Patel ◽  
...  

Aims: Canagliflozin and Metformin HCl is a new drug combination for the treatment of Diabetes Mellitus which is one of the oldest and lethal diseases of the mankind. Aim of the research work was to develop and validate novel, rapid, sensitive, specific, robust stability indicating analytical method for the simultaneous estimation of Canagliflozin and Metformin HCl in the pharmaceutical dosage form as fixed dose formulation. Study Design: Method development and validation was performed as recommended in ICH guideline “Validation of analytical procedures: Test and Methodology Q2(R1)”. Methodology: Method develop with chromatographic parameters as C18 column (250mm×4.6 mm, 5mm particle size), HPLC system with PDA detector and mobile phase contained a mixture of Phosphate Buffer pH 5.0 and Acetonitrile (60:40 v/v). The flow rate was set to 1ml/min with responses measured at 290 nm, injection volume was 20 µl, and run time of 15 mins. Results: The retention time of Metformin Hydrochloride and Canagliflozin was 5.4 min and 7.6 min respectively with resolution of 7.0. Linearity was established in the range of 10-30 µg/ml for Metformin Hydrochloride and 0.5-1.5 µg/ml for Canagliflozin with correlation coefficients more than 0.999. The percentage recoveries were between (98.62-101.22%) and (98.68-101.27%) for Metformin Hydrochloride and Canagliflozin respectively. Validation parameters were evaluated according to the International Conference on Harmonization (ICH) Q2 R1 guidelines. The forced degradation studies were performed by using HCl, NaOH, H2O2, thermal and UV radiation. The developed method was successfully applied for the quantification and hyphenated instrumental analysis. Conclusion: Significance of developed method is that it can be utilize for routine or unknown sample analysis of assay of Metformin HCl and Canagliflozin in pharmaceutical dosage form developed by various Pharmaceutical Industry.


2021 ◽  
Vol 89 (4) ◽  
pp. 51
Author(s):  
Hudson Polonini ◽  
Sarah Taylor ◽  
Clark Zander

The potential therapeutic benefit of transdermal delivery systems for some active pharmaceutical ingredients (APIs) has been well-established for decades within the scientific community. However, together with the clinical efficacy, there is the need for an evaluation of the stability of such APIs in bases with known transdermal capabilities, which is necessary to provide the compounding pharmacist with confidence when providing transdermal products. In this study, the stability of danazol, metformin HCl, and resveratrol as individual ingredients, as well as metformin HCl, resveratrol, and Vitamin D3 in combinations at bracketed high and low concentrations, were evaluated over a period of 6 months, using a ready-to-use transdermal vehicle for compounding pharmacies (Pentravan® or Pentravan® Plus). The five formulations tested (F1: Danazol 50 mg/g + MiodesinTM 85 mg/g in Pentravan®, F2: Metformin HCl 200 mg/g in Pentravan®, F3: Resveratrol 200 mg/g in Pentravan®, F4: Metformin HCl 100 mg/g + Resveratrol 100 mg/g + Vitamin D3 5000 IU in Pentravan®, and F5: Metformin HCl 200 mg/g + Resveratrol 200 mg/g + Vitamin D3 5000 IU in Pentravan® Plus) presented a beyond-use date of at least 6 months, presenting high convenience for the compounding pharmacies.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1443
Author(s):  
Myung-Hee Chun ◽  
Ji Yeon Kim ◽  
Eun-Seok Park ◽  
Du Hyung Choi

Control strategy and quality by design (QbD) are widely used to develop pharmaceutical products and improve drug quality; however, studies on fixed-dose combination (FDC) bilayer tablets are limited. In this study, the bilayer tablet consisted of high-dose metformin HCl in a sustained-release layer and low-dose dapagliflozin l-proline in an immediate-release layer. The formulation and process of each layer were optimized using the QbD approach. A d-optimal mixture design and response surface design were applied to optimize critical material attributes and critical process parameters, respectively. The robust design space was developed using Monte Carlo simulations by evaluating the risk of uncertainty in the model predictions. Multivariate analysis showed that there were significant correlations among impeller speed, massing time, granule bulk density, and dissolution in the metformin HCl layer, and among roller pressure, ribbon density, and dissolution in the dapagliflozin l-proline layer. Process analytical technology (PAT) was used with in–line transmittance near-infrared spectroscopy to confirm the bulk and ribbon densities of the optimized bilayer tablet. Moreover, the in vitro drug release and in vivo pharmacokinetic studies showed that the optimized test drug was bioequivalent to the reference drug. This study suggested that integrated QbD, statistical, and PAT approaches can develop a robust control strategy for FDC bilayer tablets by implementing real-time release testing based on the relationships among various variables.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Ishita M. Patel ◽  
Usmangani K. Chhalotiya ◽  
Harsha D. Jani ◽  
Devansh Kansara ◽  
Hetaben M. Kachhiya ◽  
...  

Abstract Background Extensive literature review revealed that no RP–LC method has been developed for simultaneous estimation of EMPA, LINA and MET in combined dosage form. This is a newer combination approved by USFDA on 4th June 2019 and it is launch in the United State Market on 27th January 2020. Result A simple, sensitive, specific, precise and accurate reverse phase—high performance liquid chromatography (RP- HPLC) method has been developed for simultaneous estimation of Empagliflozin, Linagliptin and Metformin HCl in bulk and synthetic mixture. Phenomenex C18 column (250 mm × 4.6 mm, 5 µm) was used as stationary phase for chromatographic separation through isocratic elution using Acetonitrile: Methanol: Water in a ratio (27: 20: 53, v/v/v) pH 4 adjusted with 1% Ortho-phosphoric acid as mobile phase at flow rate 1 ml/min. PDA detector was used for simultaneous analysis of all three drugs at common wavelength 223 nm and the each injection volume was 20 µl. The linearity range for Empagliflozin, Linagliptin and Metformin HCl was found to be 0.5–5 µg/ml, 0.25–2.5 µg/ml, and 50–500 µg/ml, respectively. The retention time for Empagliflozin, Linagliptin and Metformin HCl was found to be 14.5 min, 3.4 min and 2.01 min, respectively. The percentage (%) recovery was found to be 99.98–100.81% for Empagliflozin, 99.33–100.57% for Linagliptin and 100.65–101.35% for Metformin HCl respectively. Conclusion As per the international Conference on Harmonisation (ICH) Q2 (R1) guideline, proposed RP–LC method validation has been carried out. The proposed RP–LC method was repeatable and selective as per statistical analysis and it can be use for simultaneous estimation of Empagliflozin, Linagliptin and Metformin HCl in bulk and synthetic mixture. The proposed method might be applied for simultaneous estimation of all three drugs in pharmaceutical formulation.


INDIAN DRUGS ◽  
2021 ◽  
Vol 58 (06) ◽  
pp. 49-59
Author(s):  
Hemant Kumar T ◽  
◽  
Gowri Sankar D ◽  

A simple, specific, accurate, precise and stability-indicating RP-HPLC method was developed and validated for the simultaneous estimation of metformin HCl and canagliflozin in pharmaceutical formulation. The method was developed using the Altima C8 column (150 ×4.6 mm, 0.5 μm) with a mobile phase consisting of acetonitrile and 0.1 % orthophosphoric acid in water (62:38 %V/V) with a flow rate of 1 mL/min. Detection was carried out at 254 nm using a PDA detector. The retention time for metformin HCl and canagliflozin was found to be 2.282 and 3.339 min, respectively. The proposed method was validated for linearity, range, accuracy, precision, robustness, LOD and LOQ. Linearity was observed over a concentration range 15-225 μg/mL for metformin HCl (r2 =0.9995) and 5-40 μg/mL for canagliflozin (r2 =0.9988). The % RSD for intraday and interday precision was found to be 0.13 and 0.20 for metformin HCl and 0.18 and 0.20 for canagliflozin. The LOD and LOQ were found to be 0.16 μg/mL and 0.54 μg/mL for metformin HCl and LOD and LOQ were found to be 0.05 and 0.21 μg/mL for canagliflozin. Metformin HCl and canagliflozin were subjected to stress conditions of degradation including acidic, alkaline, oxidative, thermal and photolysis.


INDIAN DRUGS ◽  
2021 ◽  
Vol 58 (05) ◽  
pp. 68-72
Author(s):  
Vivek Nalawade ◽  
◽  
Mohammad A. Shaikh ◽  
Vidula Ghodke ◽  

The purpose of the work was to establish a UV spectroscopic method for the simultaneous estimation of canagliflozin and metformin hydrochloride in a binary mix. This method involves interpretation of simultaneous equations based on measurement of absorbance at two wavelengths, 237 nm and 290 nm, using UV-visible spectrophotometer with 1cm matched quartz cells. Methanol solvent was employed in this method. The developed method obeyed Beer’s-Lambert’s law in the concentration range of 2-12 µg/mL, having correlation coefficient 0.9998 and 0.9994 for canagliflozin and metformin hydrochloride, respectively. Different validation parameters like accuracy, precision, limit of detection and limit of quantitation were examined and found to be within the limits. The results of the method were validated as per ICH guidelines. A novel, simple, sensitive, rapid, accurate and economical spectrophotometric methods have been developed for simultaneous estimation of canagliflozin and metformin HCl. The technique can be used to determine the amount of canagliflozin and metformin HCl in a mixture containing canagliflozin and metformin. The absorptivities of canagliflozin and metformin HCl are 0.0481 and 0.0921, respectively. Sandell’s sensitivity (mg/cm2 /0.001 absorbance unit) for canagliflozin and metformin HCl was found to be 0.025 and 0.02931, respectively.


Sign in / Sign up

Export Citation Format

Share Document