scholarly journals THE USE OF ACTIVE LEARNING IN A SITUATION OF A CYCLICAL COLD START OF THE RECOMMENDER SYSTEM

Author(s):  
Volodymyr Oleksandrovich Leshchynskyi ◽  
Irina Oleksandrivna Leshchynska
2013 ◽  
Vol 32 (11) ◽  
pp. 3038-3041
Author(s):  
Ke-jia CHEN ◽  
Jing-yu HAN ◽  
Zheng-zhong ZHENG ◽  
Hai-jin ZHANG

2016 ◽  
Vol 43 (1) ◽  
pp. 135-144 ◽  
Author(s):  
Mehdi Hosseinzadeh Aghdam ◽  
Morteza Analoui ◽  
Peyman Kabiri

Recommender systems have been widely used for predicting unknown ratings. Collaborative filtering as a recommendation technique uses known ratings for predicting user preferences in the item selection. However, current collaborative filtering methods cannot distinguish malicious users from unknown users. Also, they have serious drawbacks in generating ratings for cold-start users. Trust networks among recommender systems have been proved beneficial to improve the quality and number of predictions. This paper proposes an improved trust-aware recommender system that uses resistive circuits for trust inference. This method uses trust information to produce personalized recommendations. The result of evaluating the proposed method on Epinions dataset shows that this method can significantly improve the accuracy of recommender systems while not reducing the coverage of recommender systems.


2021 ◽  
Vol 25 (5) ◽  
pp. 1169-1185
Author(s):  
Deniu He ◽  
Hong Yu ◽  
Guoyin Wang ◽  
Jie Li

The problem of initialization of active learning is considered in this paper. Especially, this paper studies the problem in an imbalanced data scenario, which is called as class-imbalance active learning cold-start. The novel method is two-stage clustering-based active learning cold-start (ALCS). In the first stage, to separate the instances of minority class from that of majority class, a multi-center clustering is constructed based on a new inter-cluster tightness measure, thus the data is grouped into multiple clusters. Then, in the second stage, the initial training instances are selected from each cluster based on an adaptive candidate representative instances determination mechanism and a clusters-cyclic instance query mechanism. The comprehensive experiments demonstrate the effectiveness of the proposed method from the aspects of class coverage, classification performance, and impact on active learning.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Zhiruo Zhao ◽  
Xiliang Chen ◽  
Zhixiong Xu ◽  
Lei Cao

Recently, the application of deep reinforcement learning in the recommender system is flourishing and stands out by overcoming drawbacks of traditional methods and achieving high recommendation quality. The dynamics, long-term returns, and sparse data issues in the recommender system have been effectively solved. But the application of deep reinforcement learning brings problems of interpretability, overfitting, complex reward function design, and user cold start. This study proposed a tag-aware recommender system based on deep reinforcement learning without complex function design, taking advantage of tags to make up for the interpretability problems existing in the recommender system. Our experiment is carried out on the MovieLens dataset. The result shows that the DRL-based recommender system is superior than traditional algorithms in minimum error, and the application of tags have little effect on accuracy when making up for interpretability. In addition, the DRL-based recommender system has excellent performance on user cold start problems.


2020 ◽  
Vol 1 ◽  
pp. 194-206
Author(s):  
Hanxin Wang ◽  
Daichi Amagata ◽  
Takuya Makeawa ◽  
Takahiro Hara ◽  
Niu Hao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document