scholarly journals SIMULATION OF PROGRAMMABLE SINGLE-ELECTRON NANOCIRCUITS

Author(s):  
Oleksandr Melnyk ◽  
Viktoriia Kozarevych

The speed and specializations of large-scale integrated circuits always contradict their versatility, which expands their range and causes the rise in price of electronic devices. It is possible to eliminate the contradictions between universality and specialization by developing programmable nanoelectronic devices, the algorithms of which are changed at the request of computer hardware developers, i.e. by creating arithmetic circuits with programmable characteristics. The development of issues of theory and practice of the majority principle is now an urgent problem, since the nanoelectronic execution of computer systems with programmable structures will significantly reduce their cost and significantly simplify the design stage of automated systems. Today there is an important problem of developing principles for building reliable computer equipment. The use of mathematical and circuit modeling along with computer-aided design systems (CAD) can significantly increase the reliability of the designed devices. The authors prove the advantages of creating programmable nanodevices to overcome the physical limitations of micro-rominiatization. This continuity contributes to the accelerated introduction of mathematical modeling based on programmable nanoelectronics devices. The simulation and computer-aided design of reliable programmable nanoelectronic devices based on the technology of quantum automata is described. While constructing single-electron nanocircuits of combinational and sequential types the theory of majority logic is used. The order of construction and programming of various types of arithmetic-logic units is analyzed.

Author(s):  
Chung-Shin Tsai ◽  
Kuang-Hua Chang ◽  
Jia-Yi Wang

Abstract In this paper, the integration infrastructure for a simulation-based design (SBD) environment for mechanical system design developed at Center for Computer-Aided Design at the University of Iowa is presented. The SBD environment comprises the integration infrastructure and workspaces/tools that exploit Computer Aided Design (CAD)/Computer Aided Engineering (CAE) and software engineering technologies in support of design of large scale mechanical systems. The principal functional components of the SBD environment are engineering workspaces and CAD/CAE tools that bring engineers, servicemen, and customers early in the product development process to assess design of the product concurrently. The infrastructure is based on the newly invented engineering views that allow engineers from various disciplines to view the product with their own perspectives. The infrastructure allows engineers to create CAD and simulation models of the mechanical system, access engineering workspaces and CAD/CAE tools to perform multidisciplinary engineering analyses, use planning tools to create and manage simulation processes, communicate and exchange engineering data, and conduct design trade-off analyses and make informed decisions to yield a robust optimum design. The presentation given in this paper assumes that simulation-based design activities are performed in the product detailed design stage. The environment is being extended to support concept design.


Sign in / Sign up

Export Citation Format

Share Document