Bulletin of the National Technical University "KhPI". Series: Mathematical modeling in engineering and technologies
Latest Publications


TOTAL DOCUMENTS

39
(FIVE YEARS 39)

H-INDEX

0
(FIVE YEARS 0)

Published By National Technical University Kharkiv Polytechnic Institute

2222-0631

Author(s):  
Mark Bosin ◽  
Yevgen Gomozov ◽  
Tetyana Drygach

By analyzing the experimental data available in the scientific literature, a mathematical model of the development of a single twin layer in metal crystals has been obtained. The model has the form of a differential equation, the order of which is determined by the required accuracy of obtaining the results associated with the solution of this equation. Even in the linear approximation of one of the main parameters of the phenomenological model, the latter gives qualitatively the same dependences of the development of single twins under different loading conditions compared to the experiment. Despite a large number of experimental works devoted to twinning, there is still no rigorous quantitative theory of the development of twinning layers in different media and under different conditions. However, in these works, the mathematical approach was demonstrated only in relation to elastic twins. This work is an introduction to the creation of a quantitative theory of twinning in metal crystals. Comparisons with the experimental results of the proposed phenomenological model were limited in this work to the task of demonstrating the performance of the model in the sense of predicting the most specific effects of the development of twins under various conditions and loading modes. In particular, the model implies the effect of loss and subsequent restoration of hardening by twin boundaries during stress pulsations, the Bauschinger effect upon a change in the sign of the applied voltage, and a number of other effects observed experimentally on a number of different metal crystals.


Author(s):  
Vasiliy Olshanskiy ◽  
Stanislav Olshanskiy

Two versions of approximation formulae for periodic Ateb-sine and Ateb-cosine in the first quarter of their common period are proposed. The first version is a Pade type approximation derived when constructing analytical solution of corresponding integral equation by iteration method with transforming the power series into a closed sum by Shanks’ formula. Two iteration approximations are considered. The first one is more concise but of worse approximation accuracy which deteriorates with increasing the argument value. To improve the approximation accuracy a hybrid approximation is proposed when the values of the Ateb-functions in the beginning (for the cosine) and in the end (for the sine) of the quarter period are computed by a separate formula obtained a priory by the asymptotic method. The comparison analysis of the approximate and exact values of the special functions indicates the error of the approximation proposed to be less than one per cent. The second variant of approximation is by replacing the periodic Ateb-functions by trigonometric functions of specific argument. The arguments are chosen so that the values of the special functions are exact at specific points of the quarter period. Five such collocation points are introduced in the paper. To implement this version of approximation a separate table of the values of the periodic Ateb-functions at the collocation points is compiled. The computational examples presented in the paper show the approximate values of the special functions obtained by the second version of approximation to have a good accuracy.


Author(s):  
Oleksandr Menshykov ◽  
Vasyl Menshykov ◽  
Olga Kladova

Solution for the problem for an interface crack under the action of a harmonic shear wave in normal direction is presented. The contact of the crack faces is put into consideration. The problem is solved by the boundary integral equations method, the vector components in the boundary integral equations are presented by Fourier series. The unilateral Signorini boundary conditions are involved to prevent the interpenetration of the crack faces and the emergence of tensile forces in the contact zone. Amonton-Coulomb Friction Law included allows to put into consideration relative resting of the crack opposite faces or their relative motion when one crack face is slipping or sliding across another face. The contact boundary restrictions are implemented using the iterative correction algorithm. The mathematical model adequacy is checked by comparing with classical model solution for statics problems that takes into account the crack faces contact. Numerical researches of friction influence on the displacement and contact forces distribution, size of contact zone are carried out. Influence of the faces contact and value of the friction coefficient on the distribution of stress intensity coefficients of normal rupture and transverse shear, which are the parameters of the biomaterial fracture, are presented and analyzed. It is shown that the nature of change in the distribution of the stress intensity coefficients for the conditions of tensile and shear waves is fundamentally different. It is concluded that it is possible to extend the approach proposed to the problems of three-dimensional fracture mechanics for composites with interfacial cracks at arbitrary dynamic loading.


Author(s):  
Vasiliy Olshanskiy ◽  
Stanislav Olshanskiy

The features of motion of a non-linear oscillator under the instantaneous force pulse loading are studied. The elastic characteristic of the oscillator is given by a polygonal chain consisting of two linear segments. The focus of the paper is on the influence of the dissipative forces on the possibility of occurrence of the elastic characteristic non-symmetry dynamic effect, studied previously without taking into account the influence of these forces. Four types of drag forces are considered, namely linear viscous friction, Coulomb dry friction, position friction, and quadratic viscous resistance. For the cases of linear viscous friction and Coulomb dry friction the analytical solutions of the differential equation of oscillations are found by the fitting method and the formulae for computing the swings are derived. The conditions on the parameters of the problem are determined for which the elastic characteristic non-symmetry dynamic effect occurs in the system. The conditions for the effect to occur in the system with the position friction are derived from the energy relations without solving the differential equation of motion. In the case of quadratic viscous friction the first integral of the differential equation of motion is given by the Lambert function of either positive or negative argument depending on the value of the initial velocity. The elastic characteristic non-symmetry dynamic effect is shown to occur for small initial velocities, whereas it is absent from the system when the initial velocities are sufficiently large. The values of the Lambert function are proposed to be computed by either linear interpolation of the known data or approximation of the Lambert function by elementary functions using asymptotic formulae which approximation error is less than 1%. The theoretical study presented in the paper is followed up by computational examples. The results of the computations by the formulae proposed in the paper are shown to be in perfect agreement with the results of numerical integration of the differential equation of motion of the oscillator using a computer.


Author(s):  
Alexey Galuza ◽  
Olga Kostiuk ◽  
Alla Savchenko ◽  
Anastasiia Boiko

The work is devoted to the problem of comparing objects by color. The following statement of the problem is considered: among the set of objects it is necessary to find such an object, the color of which is most similar to the color of the given object. It is assumed that for each object only its spectrum (transmission, reflection, radiation) is known, which is an exhaustive characteristic of the color of the object. In addition, the spectrum of the radiation source is assumed to be known. The use of standard methods for determining color differences has shown that the problem does not have an unambiguous solution. Two approaches to its solution have been proposed: the first is based on the transition from the spectrum to color spaces with the subsequent calculation of the Euclidean distance, and the second is based on a direct comparison of the spectra as functional dependences of the intensity on the wavelength. Within each of the approaches, two criteria for the "similarity" of objects in color are proposed, and an original approach to assessing the effectiveness of these criteria is proposed. This approach is based on the use of expert assessments of the color proximity of glass samples with known transmission spectra from a standard set. For each sample from the set, experts selected the glass closest in color from the remaining ones, after which a generalized opinion of experts was formed. To obtain an assessment of the quality of each of the criteria, for each of them and for each test glass, the remaining samples were ranked in order of increasing color distance to the given test glass. After that, the results of the criteria were compared with the generalized opinion of experts. To make the comparison result "fuzzy", for each test glass it was proposed to consider a set of five glasses closest in color (for each of the criteria). The resulting estimates of the effectiveness of each of the criteria for a set of 89 glasses are obtained and an approach to the construction of more effective complex criteria is proposed.


Author(s):  
Maryna Sofronova

The paper proposes a method for eliminating abnormal measurements (outliers) to improve the quality of multivariate data in statistical studies. Such a problem arises, for example, in the theory of managerial decision-making, since when calculating estimates of the parameters of probability distributions, the presence of anomalous (that is, those that significantly increase the confidence interval) measurements in the sample can distort the results of a statistical study, and, consequently, the main problem. The peculiarity of the proposed method is a combination of statistical and geometric methods, namely: the Gestwirt estimation method, the Tukey procedure, and a modification of the method for constructing the convex hull of a finite set of points in a multidimensional space. A set of multidimensional data is associated with a set of points of a multidimensional space. To find and eliminate outliers, a sequence of nested convex hulls, polytopes, is constructed, each of which is described by the intersection of half-spaces (support facets). A detailed algorithm for finding anomalous measurements is given. Their elimination corresponds to the successive elimination of the boundary points of nested convex hulls. The Gestwirt estimate gives the condition for stopping the operation of the algorithm. The proposed method does not require large computational costs and can be widely used in solving both theoretical and practical problems related to the processing of multidimensional data. The numerical results of the method with the number of data components 4 and 5 are presented.


Author(s):  
Daria Kurnosenko ◽  
Volodymyr Savchuk ◽  
Halyna Tuluchenko

The algorithm for approximating the experimental data of the Ramsey curve and its modifications has been developed, which provides a monotonic increase of the approximating function in the interval [0;\infty)  and an existence of a given number of inflection points. The Ramsey curve belongs to the family of logistic curves that are widely used in modeling of limited increasing processes in various subject fields. The classical Ramsey curve has two parameters and has a left constant asymmetry. It is also known that its three-parameter modification provides the possibility of displacement along the axes of ordinate. The extensive practical use of the Ramsey curve with both two and more parameters for approximating experimental dependences is restrained by the frequent loss by this curve of the logistic shape when approximating without additional restrictions on the relationships between its parameters. The article discusses modifications of the Ramsey curve with three and five parameters. The first and second derivatives of the studied modifications of the Ramsey function have a special structure. They are products of polynomial and exponential functions. This allows using Sturm's theorem on the number of polynomial roots in a given interval to control the shape of the approximating curve. It has been shown that with an increase in the number of parameters for the modified curve, the number of possible combinations of restrictions on the values of the parameters ensuring the preservation of its like shape increases significantly. The solution to the approximation problem in this case consists of solving a sequence of conditional global optimization problems with different constraints and choosing a solution that provides the smallest approximation error. Also, the studies of the accuracy of estimating the parameters of the Ramsey curve in accordance with the accuracy of the experimental data have been carried out. In order to simulate the presence of measurement errors, the values of a normally distributed random variable with a mathematical expectation equal to zero and different values of the standard deviation for different series of computational experiments were added to the values of the deterministic sequence. Computational experiments have shown a significant sensitivity of the values of the Ramsey function parameters to the measurement accuracy of experimental data.


Author(s):  
Alexey Voropay ◽  
Pavel Yegorov

The paper deals with a mechanical system consisting of a hinged rectangular plate and an additional viscoelastic support with considering its mass-inertia. The impact of the characteristics of additional support on the plate strained state is studied by an original approach of extracting elastic, viscous and inertial components from the total reaction. The plate is assumed to be medium thickness, elastic and isotropic. The Timoshenko hypothesis is used for deformation equations. The external non-stationary force initiates plate vibrations. The impact of the additional support is replaced by the action of three unknown independent non-stationary concentrated forces. The basic formulas for deriving system of three Volterra integral equations are proposed. The system is then solved by numerical and analytical method. By discretizing in time the system of Volterra integral equations is reduced to a system of matrix equations. The system of matrix equations is solved with using generalized Kramer’s algorithm for block matrices and Tikhonov’s regularization method. Note that the approach proposed is applicable for other objects with additional supports, such as beams, plates and shells having various boundary contour and boundary supporting. The results of computing elastic, viscous and inertial components of total reactions on the plate are given. The approach proposed is verified by matching the results of computations by two different methods, namely numerical and analytical for one total reaction and numerical for the total reaction obtained by adding elastic, viscous and inertial components.


Author(s):  
Yevgen Aleksandrov ◽  
Viktor Vanin ◽  
Tetyana Aleksandrova ◽  
Boris Vanin

The problem of choosing the variable parameters of a stabilizer of an object which minimize an additive quadratic integral functional reflecting the complex of requirements for a closed stabilization system is considered. To solve the problem a combined method of parametric synthesis of the stabilizer, which is a sequential combination of the Sobol grid method and the Nelder-Mead method, is proposed. At the first stage of the method by applying the Sobolev grid method a working point of the closed system in the pace of its variable parameters is transferred into a neighborhood of the quality functional global minimum point. Then at the second stage the Nelder-Mead method is used to relocated the working point into a small neighborhood of the global minimum. The method proposed comprises a particular algorithm for choosing the weight coefficient of the additive quality functional as well as makes use of the stabilization object state vector main coordinates, which provide the most adequate description of its dynamic features. The properties of a mathematical model of controlled system with discontinuous stabilization process control are studied numerically. The analysis of the plots in the dynamical system state phase space indicates non-spiral approach of the system to its equilibrium state. The synthesized control is realized in the form of a sequence of switchovers.


Author(s):  
Olga Prishchenko ◽  
Nadezhda Cheremskaya

It is known that a stationary random process is represented as a superposition of harmonic oscillations with real frequencies and uncorrelated amplitudes. In the study of nonstationary processes, it is natural to have increasing or declining oscillationсs. This raises the problem of constructing algorithms that would allow constructing broad classes of nonstationary processes from elementary nonstationary random processes. A natural generalization of the concept of the spectrum of a nonstationary random process is the transition from the real spectrum in the case of stationary to a complex or infinite multiple spectrum in the nonstationary case. There is also the problem of describing within the correlation theory of random processes in which the spectrum has no analogues in the case of stationary random processes, namely, the spectrum point is real, but it has infinite multiplicity for the operator image of the corresponding operator, and when the spectrum itself is complex. Reconstruction of the complex spectrum of a nonstationary random function is a very important problem in both theoretical and applied aspects. In the paper the procedure of reconstruction of random process, sequence, field from a spectrum for Gaussian random functions is developed. Compared to the stationary case, there are wider possibilities, for example, the construction of a nonstationary random process with a real spectrum, which has infinite multiplicity and which can be distributed over the entire finite segment of the real axis. The presence of such a spectrum leads, in contrast to the case of a stationary random process, to the appearance of new components in the spectral decomposition of random functions that correspond to the internal states of «strings», i.e. generated by solutions of systems of equations in partial derivatives of hyperbolic type. The paper deals with various cases of the spectrum of a non-self-adjoint operator , namely, the case of a discrete spectrum and the case of a continuous spectrum, which is located on a finite segment of the real axis, which is the range of values of the real non-decreasing function a(x). The cases a(x)=0, a(x)=a0,  a(x)=x and a(x) is a piecewise constant function are studied. The authors consider the recovery of nonstationary sequences for different cases of the spectrum of a non-self-adjoint operator  promising since spectral decompositions are a superposition of discrete or continuous internal states of oscillators with complex frequencies and uncorrelated amplitudes and therefore have deep physical meaning.


Sign in / Sign up

Export Citation Format

Share Document