scholarly journals Development of Donor Recipient Chimeric Cells of bone marrow origin as a novel approach for tolerance induction in transplantation

2021 ◽  
Vol 8 ◽  
pp. 8-8
Author(s):  
Joanna Cwykiel ◽  
Maria Madajka-Niemeyer ◽  
Maria Siemionow
2016 ◽  
Vol 6 ◽  
pp. 45-46
Author(s):  
Jeffrey J. Tosoian ◽  
Diane K. Reyes ◽  
Michael A. Gorin ◽  
Steven Hortopan ◽  
Alan W. Partin ◽  
...  

Life ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 66
Author(s):  
Igor Maiborodin ◽  
Elena Lushnikova ◽  
Marina Klinnikova ◽  
Swetlana Klochkova

Changes in rat liver after resection and injection of autologous multipotent mesenchymal stromal cells of bone marrow origin (MSCs) transfected with the GFP gene and cell membranes stained with red-fluorescent lipophilic membrane dye were studied by light microscopy. It was found that after the introduction of MSCs into the damaged liver, their differentiation into any cells was not found. However, under the conditions of MSCs use, the number of neutrophils in the parenchyma normalizes earlier, and necrosis and hemorrhages disappear more quickly. It was concluded that the use of MSCs at liver resection for the rapid restoration of an organ is inappropriate, since the injected cells in vivo do not differentiate either into hepatocytes, into epithelial cells of bile capillaries, into endotheliocytes and pericytes of the vascular membranes, into fibroblasts of the scar or other connective tissue structures, or into any other cells present in the liver.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Haiyan Shi ◽  
Xiaoli Li ◽  
Junling Yang ◽  
Yahong Zhao ◽  
Chengbin Xue ◽  
...  

Abstract Background Emerging evidence suggests that neural crest-derived cells (NCCs) present important functions in peripheral nerve regeneration to correct the insufficiency of autogenous Schwann cells. Postmigratory NCCs have been successfully isolated from adult rat bone marrow in our previous work. In this study, we aim to provide neural crest-derived Schwann cell precursors (SCPs) for repair of nerve defects in adult rats, and partially reveal the mechanisms involved in neuroregeneration of cell therapy. Methods A clonal cell line of neural crest precursors of rat bone marrow origin (rBM-NCPs) with SCP identity was expanded in adherent monolayer culture to ensure the stable cell viability of NCPs and potentiate the repair of nerve defects after rBM-NCPs implantation based on tissue engineering nerve grafts (TENG). Here the behavioral, morphological, and electrophysiological detection was performed to evaluate the therapy efficacy. We further investigated the treatment with NCP-conditioned medium (NCP-CM) to sensory neurons after exposure to oxygen-glucose-deprivation (OGD) and partially compared the expression of trophic factor genes in rBM-NCPs with that in mesenchymal stem cells of bone marrow origin (rBM-MSCs). Results It was showed that the constructed TENG with rBM-NCPs loaded into silk fibroin fiber scaffolds/chitosan conduits repaired 10-mm long sciatic nerve defects more efficiently than conduits alone. The axonal regrowth, remyelination promoted the reinnervation of the denervated hind limb muscle and skin and thereby alleviated muscle atrophy and facilitated the rehabilitation of motor and sensory function. Moreover, it was demonstrated that treatment with NCP-CM could restore the cultured primary sensory neurons after OGD through trophic factors including epidermal growth factor (EGF), platelet-derived growth factor alpha (PDGFα), ciliary neurotrophic factor (CNTF), and vascular endothelial growth factor alpha (VEGFα). Conclusions In summary, our findings indicated that monolayer-cultured rBM-NCPs cell-based therapy might effectively repair peripheral nerve defects partially through secreted trophic factors, which represented the secretome of rBM-NCPs differing from that of rBM-MSCs.


2014 ◽  
Vol 2 (23) ◽  
pp. 3609-3617 ◽  
Author(s):  
Haifeng Zeng ◽  
Xiyu Li ◽  
Fang Xie ◽  
Li Teng ◽  
Haifeng Chen

A novel approach for labelling and tracking BMSCs in bone tissue engineering by using dextran-coated fluorapatite nanorods doped with lanthanides.


2008 ◽  
Vol 86 (12) ◽  
pp. 1830-1836 ◽  
Author(s):  
Peter John Horton ◽  
Wayne J. Hawthorne ◽  
Stacey Walters ◽  
Tina Patel ◽  
Graeme J. Stewart ◽  
...  

Biomolecules ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 869 ◽  
Author(s):  
Qiao Li ◽  
Xiuzhe Ning ◽  
Yuepeng Wang ◽  
Qing Zhu ◽  
Yan Guo ◽  
...  

TFPR1 is a novel peptide vaccine adjuvant we recently discovered. To define the structural basis and optimize its application as an adjuvant, we designed three different truncated fragments that have removed dominant B epitopes on TFPR1, and evaluated their capacity to activate bone marrow-derived dendritic cells and their adjuvanticity. Results demonstrated that the integrity of an α-β-α sandwich conformation is essential for TFPR1 to maintain its immunologic activity and adjuvanticity. We obtained a functional truncated fragment TFPR-ta ranging from 40–168 aa of triflin that has similar adjuvanticity as TFPR1 but with 2-log fold lower immunogenicity. These results demonstrated a novel approach to evaluate and improve the activity of protein-based vaccine adjuvant.


Sign in / Sign up

Export Citation Format

Share Document