scholarly journals Reproductive Strategies and Life-history Traits of the Savi's Pine Vole, Microtus savii

2000 ◽  
Vol 17 (2) ◽  
pp. 209-216 ◽  
Author(s):  
L. Caroli ◽  
D. Capizzi ◽  
L. Luiselli
2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Shai Meiri ◽  
Gopal Murali ◽  
Anna Zimin ◽  
Lior Shak ◽  
Yuval Itescu ◽  
...  

AbstractAmniote vertebrates share a suite of extra-embryonic membranes that distinguish them from anamniotes. Other than that, however, their reproductive characteristics could not be more different. They differ in basic ectothermic vs endothermic physiology, in that two clades evolved powered flight, and one clade evolved a protective shell. In terms of reproductive strategies, some produce eggs and others give birth to live young, at various degrees of development. Crucially, endotherms provide lengthy parental care, including thermal and food provisioning—whereas ectotherms seldom do. These differences could be expected to manifest themselves in major differences between clades in quantitative reproductive traits. We review the reproductive characteristics, and the distributions of brood sizes, breeding frequencies, offspring sizes and their derivatives (yearly fecundity and biomass production rates) of the four major amniote clades (mammals, birds, turtles and squamates), and several major subclades (birds: Palaeognathae, Galloanserae, Neoaves; mammals: Metatheria and Eutheria). While there are differences between these clades in some of these traits, they generally show similar ranges, distribution shapes and central tendencies across birds, placental mammals and squamates. Marsupials and turtles, however, differ in having smaller offspring, a strategy which subsequently influences other traits.


2021 ◽  
pp. jeb.232793
Author(s):  
Matteo A. Negroni ◽  
Marah Stoldt ◽  
Marie Oster ◽  
Ann-Sophie Rupp ◽  
Barbara Feldmeyer ◽  
...  

During social evolution, life-history traits not only diverged, with social insect queens becoming highly fecund and long-lived compared to their sterile workers, but also individual traits lost their importance compared to colony-level traits. In solitary animals, fecundity is largely influenced by female size, whereas in eusocial insects, colony size and queen number can affect the egg-laying rate. Here we focussed on the ant Temnothorax rugatulus, which exhibits two queen morphs varying in size and reproductive strategy, correlating with their colony's social organization. We experimentally tested the influence of social structure, colony and body size on queen fecundity and investigated links between body size, metabolic rate and survival under paraquat-induced oxidative stress. To gain insights into the molecular physiology underlying the alternative reproductive strategies, we analysed fat body transcriptomes. Per-queen egg production was lower in polygynous colonies when fecundity was limited by worker care. Colony size was a determinant of fecundity rather than body size or queen number, highlighting the super-organismal properties of these societies. The smaller microgynes were more frequently fed by workers and exhibited an increase in metabolic activity, yet they were similarly resistant to oxidative stress. Small queens differentially expressed metabolic genes in the fat body indicating that shifts in molecular physiology and resource availability allow microgyne queens to compensate their small size with a more active metabolism without paying increased mortality costs. We provide novel insights into how life-history traits and their associations were modified during social evolution and adapted to queen reproductive strategies.


2020 ◽  
Vol 650 ◽  
pp. 7-18 ◽  
Author(s):  
HW Fennie ◽  
S Sponaugle ◽  
EA Daly ◽  
RD Brodeur

Predation is a major source of mortality in the early life stages of fishes and a driving force in shaping fish populations. Theoretical, modeling, and laboratory studies have generated hypotheses that larval fish size, age, growth rate, and development rate affect their susceptibility to predation. Empirical data on predator selection in the wild are challenging to obtain, and most selective mortality studies must repeatedly sample populations of survivors to indirectly examine survivorship. While valuable on a population scale, these approaches can obscure selection by particular predators. In May 2018, along the coast of Washington, USA, we simultaneously collected juvenile quillback rockfish Sebastes maliger from both the environment and the stomachs of juvenile coho salmon Oncorhynchus kisutch. We used otolith microstructure analysis to examine whether juvenile coho salmon were age-, size-, and/or growth-selective predators of juvenile quillback rockfish. Our results indicate that juvenile rockfish consumed by salmon were significantly smaller, slower growing at capture, and younger than surviving (unconsumed) juvenile rockfish, providing direct evidence that juvenile coho salmon are selective predators on juvenile quillback rockfish. These differences in early life history traits between consumed and surviving rockfish are related to timing of parturition and the environmental conditions larval rockfish experienced, suggesting that maternal effects may substantially influence survival at this stage. Our results demonstrate that variability in timing of parturition and sea surface temperature leads to tradeoffs in early life history traits between growth in the larval stage and survival when encountering predators in the pelagic juvenile stage.


2020 ◽  
Vol 27 (4) ◽  
pp. 195-200
Author(s):  
Ufuk Bülbül ◽  
Halime Koç ◽  
Yasemin Odabaş ◽  
Ali İhsan Eroğlu ◽  
Muammer Kurnaz ◽  
...  

Age structure of the eastern spadefoot toad, Pelobates syriacus from the Kızılırmak Delta (Turkey) were assessed using phalangeal skeletochronology. Snout-vent length (SVL) ranged from 42.05 to 86.63 mm in males and 34.03 to 53.27 mm in females. Age of adults ranged from 2 to 8 years in males and 3 to 5 years in females. For both sexes, SVL was significantly correlated with age. Males and females of the toads reached maturity at 2 years of age.


Author(s):  
Maren N. Vitousek ◽  
Laura A. Schoenle

Hormones mediate the expression of life history traits—phenotypic traits that contribute to lifetime fitness (i.e., reproductive timing, growth rate, number and size of offspring). The endocrine system shapes phenotype by organizing tissues during developmental periods and by activating changes in behavior, physiology, and morphology in response to varying physical and social environments. Because hormones can simultaneously regulate many traits (hormonal pleiotropy), they are important mediators of life history trade-offs among growth, reproduction, and survival. This chapter reviews the role of hormones in shaping life histories with an emphasis on developmental plasticity and reversible flexibility in endocrine and life history traits. It also discusses the advantages of studying hormone–behavior interactions from an evolutionary perspective. Recent research in evolutionary endocrinology has provided insight into the heritability of endocrine traits, how selection on hormone systems may influence the evolution of life histories, and the role of hormonal pleiotropy in driving or constraining evolution.


Sign in / Sign up

Export Citation Format

Share Document