queen number
Recently Published Documents


TOTAL DOCUMENTS

63
(FIVE YEARS 7)

H-INDEX

22
(FIVE YEARS 2)

2021 ◽  
Author(s):  
◽  
Meghan Dawn Cooling

<p>Though many populations of introduced species have been observed to collapse, the reasons behind these declines are seldom investigated. Anoplolepis gracilipes is considered among one of the top six most economically and ecologically damaging invasive ant species in the world. However, introduced populations of A. gracilipes have been observed to decline. My overall aims in this thesis were to document A. gracilipes population declines, to investigate the possibility that pathogens were playing a role in the observed population declines, and to identify putative pathogens infecting A. gracilipes as potential candidates for biocontrol agents.  I documented the observed A. gracilipes population declines that were the driving force for this project. I detailed large-scale reductions in the spatial extent of four populations with before and after survey data. I also presented data on three populations that were recorded as present, but disappeared before they could be spatially delimited. I speculated on the possible reasons for these declines and explained why I do not think other explanations are likely. I then investigated the hypothesis that a pathogen or parasite is affecting A. gracilipes queens in declining Arnhem Land populations. I did this in three ways: 1) based on preliminary findings, I looked at the effect of an artificial fungal infection on A. gracilipes reproduction. I compared reproductive output between control colonies and those treated with either a fungal entomopathogen (Metarhizium anisopliae) or fungicidal antibiotics. There was no correlation between either treatment and the number of eggs, larvae, pupae or males a colony produced after 70 days. I found queen number had no effect on colony reproductive output, suggesting that queens are able to adjust their egg-laying rate in the presence of other queens. I found no evidence that M. anisopliae affected reproductive output at the tested concentrations; 2) I explored the hypothesis that a pathogen that kills or affects the reproductive output of A. gracilipes queens is the mechanism or reason behind the population declines. I measured queen number per nest, egg-laying rate, fecundity and fat content and compared them between sites in different stages of decline or expansion (population types, consisting of low, medium and high-density populations). I discovered that 23% of queens had melanized nodules, a cellular immune response in insects, in their ovaries or fat bodies. The presence of nodules was correlated with a 22% decrease in the number of oocytes per ovary; however, nodule presence was not associated with population type, suggesting that though there are clearly pathogens or parasites capable of penetrating the cuticle of A. gracilipes, they are unlikely to be responsible for the observed population declines; 3) I compared microbial communities (bacteria and viruses) between queens from different population types. I found viral sequences that match to the Dicistroviridae family of viruses in low and medium-density populations. I found no differences in bacterial community structure between population types. The presence of sequences similar to the entomopathogens Rhabdochlamydia and Serratia marcescens, as well as the reproductive parasite Cardinium in A. gracilipes, deserves further investigation.  Though introduced species’ populations have been observed to decline, this is one of the first studies to quantitatively examine, document, and investigate a mechanism behind such a decline. Understanding the mechanisms by which an invader declines may have important implications for invasive ant management worldwide.</p>


2021 ◽  
Author(s):  
◽  
Meghan Dawn Cooling

<p>Though many populations of introduced species have been observed to collapse, the reasons behind these declines are seldom investigated. Anoplolepis gracilipes is considered among one of the top six most economically and ecologically damaging invasive ant species in the world. However, introduced populations of A. gracilipes have been observed to decline. My overall aims in this thesis were to document A. gracilipes population declines, to investigate the possibility that pathogens were playing a role in the observed population declines, and to identify putative pathogens infecting A. gracilipes as potential candidates for biocontrol agents.  I documented the observed A. gracilipes population declines that were the driving force for this project. I detailed large-scale reductions in the spatial extent of four populations with before and after survey data. I also presented data on three populations that were recorded as present, but disappeared before they could be spatially delimited. I speculated on the possible reasons for these declines and explained why I do not think other explanations are likely. I then investigated the hypothesis that a pathogen or parasite is affecting A. gracilipes queens in declining Arnhem Land populations. I did this in three ways: 1) based on preliminary findings, I looked at the effect of an artificial fungal infection on A. gracilipes reproduction. I compared reproductive output between control colonies and those treated with either a fungal entomopathogen (Metarhizium anisopliae) or fungicidal antibiotics. There was no correlation between either treatment and the number of eggs, larvae, pupae or males a colony produced after 70 days. I found queen number had no effect on colony reproductive output, suggesting that queens are able to adjust their egg-laying rate in the presence of other queens. I found no evidence that M. anisopliae affected reproductive output at the tested concentrations; 2) I explored the hypothesis that a pathogen that kills or affects the reproductive output of A. gracilipes queens is the mechanism or reason behind the population declines. I measured queen number per nest, egg-laying rate, fecundity and fat content and compared them between sites in different stages of decline or expansion (population types, consisting of low, medium and high-density populations). I discovered that 23% of queens had melanized nodules, a cellular immune response in insects, in their ovaries or fat bodies. The presence of nodules was correlated with a 22% decrease in the number of oocytes per ovary; however, nodule presence was not associated with population type, suggesting that though there are clearly pathogens or parasites capable of penetrating the cuticle of A. gracilipes, they are unlikely to be responsible for the observed population declines; 3) I compared microbial communities (bacteria and viruses) between queens from different population types. I found viral sequences that match to the Dicistroviridae family of viruses in low and medium-density populations. I found no differences in bacterial community structure between population types. The presence of sequences similar to the entomopathogens Rhabdochlamydia and Serratia marcescens, as well as the reproductive parasite Cardinium in A. gracilipes, deserves further investigation.  Though introduced species’ populations have been observed to decline, this is one of the first studies to quantitatively examine, document, and investigate a mechanism behind such a decline. Understanding the mechanisms by which an invader declines may have important implications for invasive ant management worldwide.</p>


2021 ◽  
pp. jeb.232793
Author(s):  
Matteo A. Negroni ◽  
Marah Stoldt ◽  
Marie Oster ◽  
Ann-Sophie Rupp ◽  
Barbara Feldmeyer ◽  
...  

During social evolution, life-history traits not only diverged, with social insect queens becoming highly fecund and long-lived compared to their sterile workers, but also individual traits lost their importance compared to colony-level traits. In solitary animals, fecundity is largely influenced by female size, whereas in eusocial insects, colony size and queen number can affect the egg-laying rate. Here we focussed on the ant Temnothorax rugatulus, which exhibits two queen morphs varying in size and reproductive strategy, correlating with their colony's social organization. We experimentally tested the influence of social structure, colony and body size on queen fecundity and investigated links between body size, metabolic rate and survival under paraquat-induced oxidative stress. To gain insights into the molecular physiology underlying the alternative reproductive strategies, we analysed fat body transcriptomes. Per-queen egg production was lower in polygynous colonies when fecundity was limited by worker care. Colony size was a determinant of fecundity rather than body size or queen number, highlighting the super-organismal properties of these societies. The smaller microgynes were more frequently fed by workers and exhibited an increase in metabolic activity, yet they were similarly resistant to oxidative stress. Small queens differentially expressed metabolic genes in the fat body indicating that shifts in molecular physiology and resource availability allow microgyne queens to compensate their small size with a more active metabolism without paying increased mortality costs. We provide novel insights into how life-history traits and their associations were modified during social evolution and adapted to queen reproductive strategies.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Sílvia Abril ◽  
Crisanto Gómez

AbstractIn social species, the presence of several reproductive individuals can generate conflict. In social insects, as queen number increases, individual oviposition rate may decrease because of direct and indirect behavioural and/or chemical interactions. Understanding the factors that mediate differences in queen fecundity should provide insight into the regulation and maintenance of highly polygynous insect societies, such as those of the invasive Argentine ant (Linepithema humile). In this study, we investigated (1) whether differences in the oviposition rates of Argentine ant queens exposed to polygynous conditions could result from interactions among them; (2) whether such differences in fecundity stemmed from differences in worker attention; and (3) whether polygynous conditions affected the cuticular hydrocarbon profiles of queens (CHCs). We found that differences in queen fecundity and CHC profiles observed under polygynous conditions disappeared when queens were exposed to monogynous conditions, suggesting some form of reproductive inhibition may exist when queens cohabit. These differences did not seem to arise from variation in worker attention because more fecund queens were not more attractive to workers. Levels of some CHCs were higher in more fecund queens. These CHCs are associated with greater queen productivity and survival. Our findings indicate that such compounds could be multifunctional queen pheromones.


2019 ◽  
Vol 29 (8) ◽  
pp. 1394-1400.e4 ◽  
Author(s):  
Kip D. Lacy ◽  
DeWayne Shoemaker ◽  
Kenneth G. Ross
Keyword(s):  

Sociobiology ◽  
2018 ◽  
Vol 65 (2) ◽  
pp. 333
Author(s):  
Laura Chavarria-Pizarro ◽  
Marjorie Silva ◽  
Fernando Barbosa Noll

In the Epiponini, queen number declines through colony cycle, becausesome queens are expelled from colonies. Here we demonstratethat Epiponini wasps may accept expelled queens in situations ofqueenlessness. One colony of Protopolybia exigua was observed at theUniversity of São Paulo in Brazil; and another of Metapolybia docilis wasobserved at La Selva Biological Station in Costa Rica. Queen removaltests were performed to study workers’ acceptance of expelled queensand queens from other colonies. In P. exigua, the experimental queenelimination caused a change in the workers’ behavior, ranging fromaggressive expulsion of non-selected queens to re-acceptance. In M.docilis workers were willing to accept queens from other colonies afterqueen elimination. Our results indicate that because of a decrease inworkers aggressiveness during the colony cycle, workers may acceptexpelled queens (even foreign ones, in experimental situations) in orderto ensure colony survival.


2018 ◽  
Vol 285 (1878) ◽  
pp. 20180221 ◽  
Author(s):  
Yu-Ching Huang ◽  
Viet Dai Dang ◽  
Ni-Chen Chang ◽  
John Wang

Supergenes consist of co-adapted loci that segregate together and are associated with adaptive traits. In the fire ant Solenopsis invicta , two ‘social’ supergene variants regulate differences in colony queen number and other traits. Suppressed recombination in this system is maintained, in part, by a greater than 9 Mb inversion, but the supergene is larger. Has the supergene in S. invicta undergone multiple large inversions? The initial gene content of the inverted allele of a supergene would be the same as that of the wild-type allele. So, how did the inversion increase in frequency? To address these questions, we cloned one extreme breakpoint in the fire ant supergene. In doing so, we found a second large (greater than 800 Kb) rearrangement. Furthermore, we determined the temporal order of the two big inversions based on the translocation pattern of a third small fragment. Because the S. invicta supergene lacks evolutionary strata, our finding of multiple inversions may support an introgression model of the supergene. Finally, we showed that one of the inversions swapped the promoter of a breakpoint-adjacent gene, which might have conferred a selective advantage relative to the non-inverted allele. Our findings provide a rare example of gene alterations arising directly from an inversion event.


2017 ◽  
Vol 108 (4) ◽  
pp. 451-460 ◽  
Author(s):  
M.D. Cooling ◽  
B.D. Hoffmann ◽  
M.A.M. Gruber ◽  
P.J. Lester

AbstractAnoplolepis gracilipes is one of the six most widespread and pestiferous invasive ant species. Populations of this invader in Arnhem Land, Australia have been observed to decline, but the reasons behind these declines are not known. We investigated if there is evidence of a pathogen that could be responsible for killing ant queens or affecting their reproductive output. We measured queen number per nest, fecundity and fat content of queens from A. gracilipes populations in various stages of decline or expansion. We found no significant difference in any of these variables among populations. However, 23% of queens were found to have melanized nodules, a cellular immune response, in their ovaries and fat bodies. The melanized nodules found in dissected queens are highly likely to indicate the presence of pathogens or parasites capable of infecting A. gracilipes. Queens with nodules had significantly fewer oocytes in their ovaries, but nodule presence was not associated with low ant population abundances. Although the microorganism responsible for the nodules is as yet unidentified, this is the first evidence of the presence of a pathogenic microorganism in the invasive ant A. gracilipes that may be affecting reproduction.


Sign in / Sign up

Export Citation Format

Share Document