AUSTRALIAN EARLY CARBONIFEROUS TIME

Author(s):  
JOHN ROBERTS ◽  
JONATHAN C. CLAOUÉ-LONG ◽  
PETER J. JONES
Keyword(s):  
LITOSFERA ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 224-230
Author(s):  
V. N. Smirnov ◽  
K. S. Ivanov ◽  
T. V. Bayanova

Research subject. The article presents the results of dating two dolerite dikes differing in geochemical features from a section along the Iset river in the area of Smolinskoe settlement (the Eastern zone of the Middle Urals). Materials and methods. The dating was performed by an U-Pb ID-TIMS technique for single zircon grains using an artificial 205Pb/235U tracer in the laboratory of geochronology and isotope geochemistry of the Geological Institute of the Kola Science Centre of the Russian Academy of Sciences. The lead isotopic composition and uranium and lead concentrations were measured using a Finnigan-MAT (RPQ) seven-channel mass spectrometer in dynamic mode using a secondary electron multiplier and RPQ quadrupole in ion counting mode. Results. The dikes were dated 330 ± 3 Ma and 240 ± 2 Ma. Conclusions. The research results indicate different ages of dolerite dikes developed within the Eastern zone of the Middle Urals. The oldest of the two established age levels corresponds to the Early Carboniferous era. This fact, along with the proximity of the dolerites to the petrochemical features of the basaltoids of the Early Carboniferous Beklenischevsky volcanic complex, allows these bodies to be considered as hypabyssal comagmates of these volcanics. The youngest obtained age level – Triassic – indicates that the introduction of some dolerite dikes was associated with the final phases of the trapp formation developed rarely within the eastern outskirts of the Urals and widely further east in the foundation (pre-Jurassic basement) of the West-Siberian Plate.


1983 ◽  
Vol 120 (1) ◽  
pp. 51-58 ◽  
Author(s):  
A. J. Boucot ◽  
C. H. C. Brunton ◽  
J. N. Theron

SummaryThe Devonian brachiopod Tropidoleptus is recognized for the first time in South Africa. It is present in the lower part of the Witteberg Group at four widely separated localities. Data regarding the stratigraphical range of the genus elsewhere, combined with information on recently described fossil plants and vertebrates from underlying strata of the upper Bokkeveld Group, suggest that a Frasnian or even Givetian age is reasonable for the lower part of the Witteberg Group. The recognition of Tropidoleptus in a shallow water, near-shore, molluscan association, at the top of the South African marine Devonian sequence, is similar to its occurrence in Bolivia, and suggests a common Malvinokaffric Realm history of shallowing, prior to later Devonian or early Carboniferous non-marine sedimentation. It is noteworthy that Tropidoleptus is now known to occur in ecologically suitable environments around the Atlantic, but is absent from these same environments in Asia and Australia. Tropidoleptus is an excellent example of dispersal in geological time — first appearing in northern Europe and Nova Scotia, then elsewhere in eastern North America and North Africa, followed by South America and South Africa, while continuing in North America.


2021 ◽  
pp. M57-2021-15
Author(s):  
E. V. Deev ◽  
G. G. Shemin ◽  
V. A. Vernikovsky ◽  
O. I. Bostrikov ◽  
P. A. Glazyrin ◽  
...  

AbstractThe Yenisei-Khatanga Composite Tectono-Sedimentary Element (YKh CTSE) is located between the Siberian Craton and the Taimyr-Severnaya Zemlya fold-and-thrust belt. The total thickness of the Mesoproterozoic-Cenozoic sediments of YKh CTSE reaches 20 to 25 km. They are divided into four tectono-sedimentary elements (TSE): (i) Mesoproterozoic-early Carboniferous Siberian Craton continental margin, (ii) middle Carboniferous-Middle Triassic syn-orogenic Taimyr foreland basin, (iii) late Permian-Early Triassic syn-rift, and (iv) Triassic-Early Paleocene post-rift. The last one is the most important in terms of its petroleum potential and is the most drilled part of the CTSE. Its thickness accounts for half of the total thickness of YKh CTSE. The margins of the post-rift TSE and the inner system of inversion swells and adjacent troughs and depressions were shaped by three tectonic events: (i) middle Carboniferous-Middle Triassic Taimyr orogeny, (ii) Late Jurassic-Early Cretaceous Verkhoyansk orogeny, (iii) Late Cenozoic uplift. These processes led to more intense migration of hydrocarbons, the trap formation and their infill with hydrocarbons. Triassic, Jurassic, and Lower Cretaceous source rocks are mostly gas-prone, and among 20 discovered fields in Jurassic and Cretaceous plays, 17 are gas or mixed-type fields.


Sign in / Sign up

Export Citation Format

Share Document