Application of Wireless Sensor Network Based on ZigBee Technology in Marine Ecological Environment Monitoring

2020 ◽  
Vol 110 (sp1) ◽  
Author(s):  
Hui Zhang
2013 ◽  
Vol 791-793 ◽  
pp. 975-979
Author(s):  
Cheng Bo Guan ◽  
Jing Yun Liu ◽  
Li Shuan Hu ◽  
Qin Zhang

The existing wired monitoring systems for edible fungus cultivation has some shortcomings such as complex wiring, unsatisfied function, low automatic level and so on. This paper developed a composite environment monitoring system for edible fungus cultivation based on wireless sensor network with ZigBee technology. Through a star wireless sensor network topology, this system acquired the temperature and humidity of cultivation environment, as well as the growing image of edible fungus. Meanwhile, according to the growing nature of edible fungus, a control strategy for cultivation environment was developed and integrated in the system. The proposed composite environment monitoring system provided a good solution for edible fungus cultivation industry.


2013 ◽  
Vol 380-384 ◽  
pp. 635-638
Author(s):  
Chen Chen

With advance of our human beings science and technology and enhance of the living standards, more and more people have addressed higher requirements on the environmental conditions in a hospital, therefore, the traditional and no-intelligent monitoring devices are being replaced by the automated and networked monitoring systems gradually. In this case, application of the wireless sensor network just fits this need. This paper proposes the Tianjin First Central Hospital indoor environment monitoring & control system of distributed acquisition and execution, and centralized management by focusing on the needs for the technical indicators of the hospital indoor environment. During design of the system, an universal design concept was put forward, and also a non-standard communication protocol for the wireless sensor network designed independently in combination with the OSI open standard. In this paper, realization of the communication protocol among the nodes with embedded software and the operation mechanism of the modes themselves are discussed, also a console panel has been developed for the data center. Several software design algorithms are proposed with respect to the network layout. This paper also describes the test platform of the Tianjin First Central Hospital indoor environment monitoring & control system established with the network components designed, and provides the test and verification results, including the monitored data of the various gases, corresponding automatic control functions, and underlay BER analysis. The results show that this system can basically realize automatic monitoring on the Tianjin First Central Hospital indoor environment. At present, the sensitive gases include CO, CO2, O2, NH3 and formaldehyde, sensitive environments temperature, humidity and light intensity, and controlled targets ventilation and lighting. This paper offers an optional solution for environment monitoring and has certain theoretical value and engineering significance.


Sign in / Sign up

Export Citation Format

Share Document