Study on Hydrodynamic Performance Model of Offshore Wind Turbine System Based on Time-domain Coupling Analysis

2019 ◽  
Vol 94 (sp1) ◽  
pp. 337
Author(s):  
Haotian Wu ◽  
Xueping Gu
2013 ◽  
Vol 477-478 ◽  
pp. 114-118
Author(s):  
Jia Rong Xie ◽  
Cheng Bi Zhao ◽  
Xiao Ming Chen ◽  
You Hong Tang ◽  
Wei Lin

With the wind turbine become larger due to technology development, the effects of wind load on the dynamic behaviors of wind turbine system play a more important pole, especially for offshore wind turbine system with floating platform. To research such effects, the dynamic behaviors of a new semi-submersible platform of a 10 MW wind turbine in 300 m deep seawater are studied in this study. Firstly, frequency domain analysis is done to show the performances of the semi-submersible platform and prepare hydrodynamic coefficients for time domain analysis. Then time domain analysis is studied with the consideration of the coupled load effects of the wind turbine floating platform, mooring lines and ocean environment. Main load components on the wind turbine floating platform are disposed, and the effects of wind load are studied as a key point. Though the result shows that wave load still dominates the contribution to motions of rolling, heaving and surging, the contribution of wind load becomes more important than current load in the operation case, which is different of traditional floating platform.


2021 ◽  
Vol 11 (2) ◽  
pp. 574
Author(s):  
Rundong Yan ◽  
Sarah Dunnett

In order to improve the operation and maintenance (O&M) of offshore wind turbines, a new Petri net (PN)-based offshore wind turbine maintenance model is developed in this paper to simulate the O&M activities in an offshore wind farm. With the aid of the PN model developed, three new potential wind turbine maintenance strategies are studied. They are (1) carrying out periodic maintenance of the wind turbine components at different frequencies according to their specific reliability features; (2) conducting a full inspection of the entire wind turbine system following a major repair; and (3) equipping the wind turbine with a condition monitoring system (CMS) that has powerful fault detection capability. From the research results, it is found that periodic maintenance is essential, but in order to ensure that the turbine is operated economically, this maintenance needs to be carried out at an optimal frequency. Conducting a full inspection of the entire wind turbine system following a major repair enables efficient utilisation of the maintenance resources. If periodic maintenance is performed infrequently, this measure leads to less unexpected shutdowns, lower downtime, and lower maintenance costs. It has been shown that to install the wind turbine with a CMS is helpful to relieve the burden of periodic maintenance. Moreover, the higher the quality of the CMS, the more the downtime and maintenance costs can be reduced. However, the cost of the CMS needs to be considered, as a high cost may make the operation of the offshore wind turbine uneconomical.


Author(s):  
H. K. Jang ◽  
H. C. Kim ◽  
M. H. Kim ◽  
K. H. Kim

Numerical tools for a single floating offshore wind turbine (FOWT) have been developed by a number of researchers, while the investigation of multi-unit floating offshore wind turbines (MUFOWT) has rarely been performed. Recently, a numerical simulator was developed by TAMU to analyze the coupled dynamics of MUFOWT including multi-rotor-floater-mooring coupled effects. In the present study, the behavior of MUFOWT in time domain is described through the comparison of two load cases in maximum operational and survival conditions. A semi-submersible floater with four 2MW wind turbines, moored by eight mooring lines is selected as an example. The combination of irregular random waves, steady currents and dynamic turbulent winds are applied as environmental loads. As a result, the global motion and kinetic responses of the system are assessed in time domain. Kane’s dynamic theory is employed to formulate the global coupled dynamic equation of the whole system. The coupling terms are carefully considered to address the interactions among multiple turbines. This newly developed tool will be helpful in the future to evaluate the performance of MUFOWT under diverse environmental scenarios. In the present study, the aerodynamic interactions among multiple turbines including wake/array effect are not considered due to the complexity and uncertainty.


Author(s):  
Yougang Tang ◽  
Jun Hu ◽  
Liqin Liu

The wind resources for ocean power generation are mostly distributed in sea areas with the distance of 5–50km from coastline, whose water depth are generally over 20m. To improve ocean power output and economic benefit of offshore wind farm, it is necessary to choose floating foundation for offshore wind turbine. According to the basic data of a 600kW wind turbine with a horizontal shaft, the tower, semi-submersible foundation and mooring system are designed in the 60-meter-deep sea area. Precise finite element models of the floating wind turbine system are established, including mooring lines, floating foundation, tower and wind turbine. Dynamic responses for the floating foundation of offshore wind turbine are investigated under wave load in frequency domain.


2019 ◽  
Vol 19 (4) ◽  
pp. 1017-1031 ◽  
Author(s):  
Ying Xu ◽  
George Nikitas ◽  
Tong Zhang ◽  
Qinghua Han ◽  
Marios Chryssanthopoulos ◽  
...  

The offshore wind turbines are dynamically sensitive, whose fundamental frequency can be very close to the forcing frequencies activated by the environmental and turbine loads. Minor changes of support conditions may lead to the shift of natural frequencies, and this could be disastrous if resonance happens. To monitor the support conditions and thus to enhance the safety of offshore wind turbines, a model updating method is developed in this study. A hybrid sensing system was fabricated and set up in the laboratory to investigate the long-term dynamic behaviour of the offshore wind turbine system with monopile foundation in sandy deposits. A finite element model was constructed to simulate structural behaviours of the offshore wind turbine system. Distributed nonlinear springs and a roller boundary condition are used to model the soil–structure interaction properties. The finite element model and the test results were used to analyse the variation of the support condition of the monopile, through an finite element model updating process using estimation of distribution algorithms. The results show that the fundamental frequency of the test model increases after a period under cyclic loading, which is attributed to the compaction of the surrounding sand instead of local damage of the structure. The hybrid sensing system is reliable to detect both the acceleration and strain responses of the offshore wind turbine model and can be potentially applied to the remote monitoring of real offshore wind turbines. The estimation of distribution algorithm–based model updating technique is demonstrated to be successful for the support condition monitoring of the offshore wind turbine system, which is potentially useful for other model updating and condition monitoring applications.


2016 ◽  
Vol 2016 ◽  
pp. 1-16
Author(s):  
H. F. Wang ◽  
Y. H. Fan

The tension-leg platform (TLP) supporting structure is a good choice for floating offshore wind turbines because TLP has superior motion dynamics. This study investigates the effects of TLP spoke dimensions on the motion of a floating offshore wind turbine system (FOWT). Spoke dimension and offshore floating TLP were subjected to irregular wave and wind excitation to evaluate the motion of the FOWT. This research has been divided into two parts: (1) Five models were designed based on different spoke dimensions, and aerohydroservo-elastic coupled analyses were conducted on the models using the finite element method. (2) Considering the coupled effects of the dynamic response of a top wind turbine, a supporting-tower structure, a mooring system, and two models on a reduced scale of 1 : 80 were constructed and experimentally tested under different conditions. Numerical and experimental results demonstrate that the spoke dimensions have a significant effect on the motion of FOWT and the experimental result that spoke dimension can reduce surge platform movement to improve turbine performance.


Sign in / Sign up

Export Citation Format

Share Document