scholarly journals Improving the Strategy of Maintaining Offshore Wind Turbines through Petri Net Modelling

2021 ◽  
Vol 11 (2) ◽  
pp. 574
Author(s):  
Rundong Yan ◽  
Sarah Dunnett

In order to improve the operation and maintenance (O&M) of offshore wind turbines, a new Petri net (PN)-based offshore wind turbine maintenance model is developed in this paper to simulate the O&M activities in an offshore wind farm. With the aid of the PN model developed, three new potential wind turbine maintenance strategies are studied. They are (1) carrying out periodic maintenance of the wind turbine components at different frequencies according to their specific reliability features; (2) conducting a full inspection of the entire wind turbine system following a major repair; and (3) equipping the wind turbine with a condition monitoring system (CMS) that has powerful fault detection capability. From the research results, it is found that periodic maintenance is essential, but in order to ensure that the turbine is operated economically, this maintenance needs to be carried out at an optimal frequency. Conducting a full inspection of the entire wind turbine system following a major repair enables efficient utilisation of the maintenance resources. If periodic maintenance is performed infrequently, this measure leads to less unexpected shutdowns, lower downtime, and lower maintenance costs. It has been shown that to install the wind turbine with a CMS is helpful to relieve the burden of periodic maintenance. Moreover, the higher the quality of the CMS, the more the downtime and maintenance costs can be reduced. However, the cost of the CMS needs to be considered, as a high cost may make the operation of the offshore wind turbine uneconomical.

2019 ◽  
Vol 19 (4) ◽  
pp. 1017-1031 ◽  
Author(s):  
Ying Xu ◽  
George Nikitas ◽  
Tong Zhang ◽  
Qinghua Han ◽  
Marios Chryssanthopoulos ◽  
...  

The offshore wind turbines are dynamically sensitive, whose fundamental frequency can be very close to the forcing frequencies activated by the environmental and turbine loads. Minor changes of support conditions may lead to the shift of natural frequencies, and this could be disastrous if resonance happens. To monitor the support conditions and thus to enhance the safety of offshore wind turbines, a model updating method is developed in this study. A hybrid sensing system was fabricated and set up in the laboratory to investigate the long-term dynamic behaviour of the offshore wind turbine system with monopile foundation in sandy deposits. A finite element model was constructed to simulate structural behaviours of the offshore wind turbine system. Distributed nonlinear springs and a roller boundary condition are used to model the soil–structure interaction properties. The finite element model and the test results were used to analyse the variation of the support condition of the monopile, through an finite element model updating process using estimation of distribution algorithms. The results show that the fundamental frequency of the test model increases after a period under cyclic loading, which is attributed to the compaction of the surrounding sand instead of local damage of the structure. The hybrid sensing system is reliable to detect both the acceleration and strain responses of the offshore wind turbine model and can be potentially applied to the remote monitoring of real offshore wind turbines. The estimation of distribution algorithm–based model updating technique is demonstrated to be successful for the support condition monitoring of the offshore wind turbine system, which is potentially useful for other model updating and condition monitoring applications.


2021 ◽  
Vol 9 (5) ◽  
pp. 543
Author(s):  
Jiawen Li ◽  
Jingyu Bian ◽  
Yuxiang Ma ◽  
Yichen Jiang

A typhoon is a restrictive factor in the development of floating wind power in China. However, the influences of multistage typhoon wind and waves on offshore wind turbines have not yet been studied. Based on Typhoon Mangkhut, in this study, the characteristics of the motion response and structural loads of an offshore wind turbine are investigated during the travel process. For this purpose, a framework is established and verified for investigating the typhoon-induced effects of offshore wind turbines, including a multistage typhoon wave field and a coupled dynamic model of offshore wind turbines. On this basis, the motion response and structural loads of different stages are calculated and analyzed systematically. The results show that the maximum response does not exactly correspond to the maximum wave or wind stage. Considering only the maximum wave height or wind speed may underestimate the motion response during the traveling process of the typhoon, which has problems in guiding the anti-typhoon design of offshore wind turbines. In addition, the coupling motion between the floating foundation and turbine should be considered in the safety evaluation of the floating offshore wind turbine under typhoon conditions.


2021 ◽  
Vol 9 (6) ◽  
pp. 589
Author(s):  
Subhamoy Bhattacharya ◽  
Domenico Lombardi ◽  
Sadra Amani ◽  
Muhammad Aleem ◽  
Ganga Prakhya ◽  
...  

Offshore wind turbines are a complex, dynamically sensitive structure due to their irregular mass and stiffness distribution, and complexity of the loading conditions they need to withstand. There are other challenges in particular locations such as typhoons, hurricanes, earthquakes, sea-bed currents, and tsunami. Because offshore wind turbines have stringent Serviceability Limit State (SLS) requirements and need to be installed in variable and often complex ground conditions, their foundation design is challenging. Foundation design must be robust due to the enormous cost of retrofitting in a challenging environment should any problem occur during the design lifetime. Traditionally, engineers use conventional types of foundation systems, such as shallow gravity-based foundations (GBF), suction caissons, or slender piles or monopiles, based on prior experience with designing such foundations for the oil and gas industry. For offshore wind turbines, however, new types of foundations are being considered for which neither prior experience nor guidelines exist. One of the major challenges is to develop a method to de-risk the life cycle of offshore wind turbines in diverse metocean and geological conditions. The paper, therefore, has the following aims: (a) provide an overview of the complexities and the common SLS performance requirements for offshore wind turbine; (b) discuss the use of physical modelling for verification and validation of innovative design concepts, taking into account all possible angles to de-risk the project; and (c) provide examples of applications in scaled model tests.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 579
Author(s):  
Taimoor Asim ◽  
Sheikh Zahidul Islam ◽  
Arman Hemmati ◽  
Muhammad Saif Ullah Khalid

Offshore wind turbines are becoming increasingly popular due to their higher wind energy harnessing capabilities and lower visual pollution. Researchers around the globe have been reporting significant scientific advancements in offshore wind turbines technology, addressing key issues, such as aerodynamic characteristics of turbine blades, dynamic response of the turbine, structural integrity of the turbine foundation, design of the mooring cables, ground scouring and cost modelling for commercial viability. These investigations range from component-level design and analysis to system-level response and optimization using a multitude of analytical, empirical and numerical techniques. With such wide-ranging studies available in the public domain, there is a need to carry out an extensive yet critical literature review on the recent advancements in offshore wind turbine technology. Offshore wind turbine blades’ aerodynamics and the structural integrity of offshore wind turbines are of particular importance, which can lead towards system’s optimal design and operation, leading to reduced maintenance costs. Thus, in this study, our focus is to highlight key knowledge gaps in the scientific investigations on offshore wind turbines’ aerodynamic and structural response. It is envisaged that this study will pave the way for future concentrated efforts in better understanding the complex behavior of these machines.


2021 ◽  
Vol 11 (24) ◽  
pp. 11665
Author(s):  
Shi Liu ◽  
Yi Yang ◽  
Chao Wang ◽  
Yuangang Tu

Spar-type floating offshore wind turbines commonly vibrate excessively when under the coupling impact of wind and wave. The wind turbine vibration can be controlled by developing its mooring system. Thus, this study proposes a novel mooring system for the spar-type floating offshore wind turbine. The proposed mooring system has six mooring lines, which are divided into three groups, with two mooring lines in the same group being connected to the same fairlead. Subsequently, the effects of the included angle between the two mooring lines on the mooring-system’s performance are investigated. Then, these six mooring lines are connected to six independent fairleads for comparison. FAST is utilized to calculate wind turbine dynamic response. Wind turbine surge, pitch, and yaw movements are presented and analyzed in time and frequency domains to quantitatively evaluate the performances of the proposed mooring systems. Compared with the mooring system with six fairleads, the mooring system with three fairleads performed better. When the included angle was 40°, surge, pitch, and yaw movement amplitudes of the wind turbine reduced by 39.51%, 6.8%, and 12.34%, respectively, when under regular waves; they reduced by 56.08%, 25.00%, and 47.5%, respectively, when under irregular waves. Thus, the mooring system with three fairleads and 40° included angle is recommended.


2020 ◽  
Vol 8 (11) ◽  
pp. 859
Author(s):  
Thanh-Dam Pham ◽  
Hyunkyoung Shin

Floating offshore wind turbines (FOWTs) have been installed in Europe and Japan with relatively modern technology. The installation of floating wind farms in deep water is recommended because the wind speed is stronger and more stable. The design of the FOWT must ensure it is able to withstand complex environmental conditions including wind, wave, current, and performance of the wind turbine. It needs simulation tools with fully integrated hydrodynamic-servo-elastic modeling capabilities for the floating offshore wind turbines. Most of the numerical simulation approaches consider only first-order hydrodynamic loads; however, the second-order hydrodynamic loads have an effect on a floating platform which is moored by a catenary mooring system. At the difference-frequencies of the incident wave components, the drift motion of a FOWT system is able to have large oscillation around its natural frequency. This paper presents the effects of second-order wave loads to the drift motion of a semi-submersible type. This work also aimed to validate the hydrodynamic model of Ulsan University (UOU) in-house codes through numerical simulations and model tests. The NREL FAST code was used for the fully coupled simulation, and in-house codes of UOU generates hydrodynamic coefficients as the input for the FAST code. The model test was performed in the water tank of UOU.


Author(s):  
P. Agarwal ◽  
L. Manuel

In the design of wind turbines—onshore or offshore—the prediction of extreme loads associated with a target return period requires statistical extrapolation from available loads data. The data required for such extrapolation are obtained by stochastic time-domain simulation of the inflow turbulence, the incident waves, and the turbine response. Prediction of accurate loads depends on assumptions made in the simulation models employed. While for the wind, inflow turbulence models are relatively well established, for wave input, the current practice is to model irregular (random) waves using a linear wave theory. Such a wave model does not adequately represent waves in shallow waters where most offshore wind turbines are being sited. As an alternative to this less realistic wave model, the present study investigates the use of irregular nonlinear (second-order) waves for estimating loads on an offshore wind turbine, with a focus on the fore-aft tower bending moment at the mudline. We use a 5MW utility-scale wind turbine model for the simulations. Using, first, simpler linear irregular wave modeling assumptions, we establish long-term loads and identify governing environmental conditions (i.e., the wind speed and wave height) that are associated with the 20-year return period load derived using the inverse first-order reliability method. We present the nonlinear irregular wave model next and incorporate it into an integrated wind-wave-response simulation analysis program for offshore wind turbines. We compute turbine loads for the governing environmental conditions identified with the linear model and also for an extreme environmental state. We show that computed loads are generally larger with the nonlinear wave modeling assumptions; this establishes the importance of using such refined nonlinear wave models in stochastic simulation of the response of offshore wind turbines.


Author(s):  
Yajun Ren ◽  
Vengatesan Venugopal

Abstract The complex dynamic characteristics of Floating Offshore Wind Turbines (FOWTs) have raised wider consideration, as they are likely to experience harsher environments and higher instabilities than the bottom fixed offshore wind turbines. Safer design of a mooring system is critical for floating offshore wind turbine structures for station keeping. Failure of mooring lines may lead to further destruction, such as significant changes to the platform’s location and possible collisions with a neighbouring platform and eventually complete loss of the turbine structure may occur. The present study focuses on the dynamic responses of the National Renewable Energy Laboratory (NREL)’s OC3-Hywind spar type floating platform with a NREL offshore 5-MW baseline wind turbine under failed mooring conditions using the fully coupled numerical simulation tool FAST. The platform motions in surge, heave and pitch under multiple scenarios are calculated in time-domain. The results describing the FOWT motions in the form of response amplitude operators (RAOs) and spectral densities are presented and discussed in detail. The results indicate that the loss of the mooring system firstly leads to longdistance drift and changes in platform motions. The natural frequencies and the energy contents of the platform motion, the RAOs of the floating structures are affected by the mooring failure to different degrees.


Author(s):  
Martin L. Pollack ◽  
Brian J. Petersen ◽  
Benjamin S. H. Connell ◽  
David S. Greeley ◽  
Dwight E. Davis

Coincidence of structural resonances with wind turbine dynamic forces can lead to large amplitude stresses and subsequent accelerated fatigue. For this reason, the wind turbine system is designed to avoid resonance coincidence. In particular, the current practice is to design the wind turbine support structure such that its fundamental resonance does not coincide with the fundamental rotational and blade passing frequencies of the rotor. For offshore wind turbines, resonance avoidance is achieved by ensuring that the support structure fundamental resonant frequency lies in the frequency band between the rotor and blade passing frequencies over the operating range of the turbine. This strategy is referred to as “soft-stiff” and has major implications for the structural design of the wind turbine. This paper details the technical basis for the “soft-stiff” resonance avoidance design methodology, investigates potential vulnerabilities in this approach, and explores the sensitivity of the wind turbine structural response to different aspects of the system’s design. The assessment addresses the wind turbine forcing functions, the coupled dynamic responses and resonance characteristics of the wind turbine’s structural components, and the system’s susceptibility to fatigue failure. It is demonstrated that the design practices for offshore wind turbines should reflect the importance of aerodynamic damping for the suppression of deleterious vibrations, consider the possibility of foundation degradation and its influence on the support structure’s fatigue life, and include proper treatment of important ambient sources such as wave and gust loading. These insights inform potential vibration mitigation and resonance avoidance strategies, which are briefly discussed.


Sign in / Sign up

Export Citation Format

Share Document