Focusing of Tsunami Energy at Imwon Port

2020 ◽  
Vol 95 (sp1) ◽  
pp. 247
Author(s):  
Kwang-Jun Lee ◽  
Yong-Sik Cho
Keyword(s):  
2020 ◽  
Vol 75 (5) ◽  
pp. 501-506
Author(s):  
M. A. Nosov ◽  
S. V. Kolesov ◽  
A. V. Bolshakova ◽  
G. N. Nurislamova

2011 ◽  
Vol 3 (1) ◽  
Author(s):  
Hadikusumah Hadikusumah ◽  
J. D. Lekalete

Research of physical oceanographic conditions post-tsunami was carried out and subsequently compared with the pre-tsunami 1998. Measurement of suhu, salinity and light transmission was conducted by CTDSBE911pls Model. Results showed that the flow in the Straits of Malacca flowed into the northwest and turned back into the Strait of Bengal and the next rotation into the flow of waters along the west coast of Nangro Aceh Darusalam (NAD). The mainstream off coast NAD in the Indian Ocean flowed to the northwest. Upper thermocline layer (17 m to 50 m) moved upward in 2005 and 2006 compared with previous data 1998 (90 m to 125 m). The moving upward thermocline in 2006 was allegedly due to the influence of Indian Ocean Dipole (IOD) positive. This requires further verification through long-term data collection to determine the monthly and annual variations, which will be compared with previous research. Light transmission (Tx) in 2005 from the surface to near the bottom (water column) was found lower than the year 1998 and 2006. This result was allegedly caused by resuspension from the seabed by energy turbulent produced by the tsunami. Heat content between 5 to 65 m depth in 2005 was higher than in 1998 and 2006. The higher heat content during the year of 2005 (post tsunami) was caused by friction due to the influence of tsunami energy, which predominantly found in the mixed layer depth. Type of water masses in the study area was a mixing between the local water mass, Malacca Strait Water (MSA), Bay of Bengal Water (BBW) under the influence of Arab Waters (AW), and the Indian Deep Water (IDW).Keywords: current, thermocline, heat content, watermass type, and Nangro Aceh Darusalam


Author(s):  
Raquel P. Felix ◽  
Judith A. Hubbard ◽  
James D. P. Moore ◽  
Adam D. Switzer

ABSTRACT The frontal sections of subduction zones are the source of a poorly understood hazard: “tsunami earthquakes,” which generate larger-than-expected tsunamis given their seismic shaking. Slip on frontal thrusts is considered to be the cause of increased wave heights in these earthquakes, but the impact of this mechanism has thus far not been quantified. Here, we explore how frontal thrust slip can contribute to tsunami wave generation by modeling the resulting seafloor deformation using fault-bend folding theory. We then quantify wave heights in 2D and expected tsunami energies in 3D for both thrust splays (using fault-bend folding) and down-dip décollement ruptures (modeled as elastic). We present an analytical solution for the damping effect of the water column and show that, because the narrow band of seafloor uplift produced by frontal thrust slip is damped, initial tsunami heights and resulting energies are relatively low. Although the geometry of the thrust can modify seafloor deformation, water damping reduces these differences; tsunami energy is generally insensitive to thrust ramp parameters, such as fault dip, geological evolution, sedimentation, and erosion. Tsunami energy depends primarily on three features: décollement depth below the seafloor, water depth, and coseismic slip. Because frontal ruptures of subduction zones include slip on both the frontal thrust and the down-dip décollement, we compare their tsunami energies. We find that thrust ramps generate significantly lower energies than the paired slip on the décollement. Using a case study of the 25 October 2010 Mw 7.8 Mentawai tsunami earthquake, we show that although slip on the décollement and frontal thrust together can generate the required tsunami energy, <10% was contributed by the frontal thrust. Overall, our results demonstrate that the wider, lower amplitude uplift produced by décollement slip must play a dominant role in the tsunami generation process for tsunami earthquakes.


Author(s):  
Mohammadreza Javanmardi ◽  
M. Reza Alam

Tsunamis are a major threat to coastal communities. One of the ways to avoid tsunami disasters is to use breakwaters to attenuate the incident tsunami energy. The incident tsunami energy is expected to be dissipated by induced wave breaking in the shallow water over the structure peak. In this paper, a new method to attenuate the tsunami energy is described and investigated. This new concept dissipates tsunami energy by implementing small barriers into the water before the tsunami reaches the shore. The interaction of tsunami-like solitary waves with new submerged barriers has been investigated and their performance was compared with that of conventional breakwaters. We found that the new structure can be used as a tsunami wave attenuator.


Author(s):  
Yuto KANEKO ◽  
Yuta MITOBE ◽  
Hitoshi TANAKA ◽  
Shunsuke AITA ◽  
Daisuke KOMORI

2014 ◽  
Vol 1 (34) ◽  
pp. 38 ◽  
Author(s):  
Gozo Tsujimoto ◽  
Ryo Mineura ◽  
Fumihiko Yamada ◽  
Tetsuya Kakinoki ◽  
Kohji Uno

Author(s):  
M.V Berry

Shallower regions in the oceans can act as lenses, focusing the energy of tsunamis, typically onto cusp points where two caustic lines meet. Diffraction theory enables calculation of the profile of a tsunami wave propagating through a cusp. The wave elevation depends on position, time and two main parameters M and B : the large parameter M is the distance of the cusp from the lens, divided by the local wavelength of the tsunami without focusing, and B quantifies the spatial extent of the initial disturbance. Focusing amplifies the wave by a factor A proportional to M 1/4 and can potentially multiply the tsunami energy (proportional to A 2 ) 10-fold over a transverse range of tens of kilometres.


Geologos ◽  
2013 ◽  
Vol 19 (4) ◽  
pp. 257-272 ◽  
Author(s):  
Aleksandra Vierek

Abstract Late Devonian coarse-grained carbonate deposits in the Holy Cross Mountains were studied for possible storm depositional systems and catastrophic tsunami events, as it must be assumed that the investigated area was strongly affected by tropical hurricanes generated in the open ocean North of Gondwana. This assumption appears consistent with diagnostic features of carbonate tempestites at several places in the Holy Cross Mountains. Sedimentary structures and textures that indicate so are, among other evidence, erosional bases with sole marks, graded units, intra- and bioclasts, different laminations and burrowing at the tops of tempestite layers. It has been suggested before that a tsunami occurred during the Late Devonian, but the Laurussian shelf had an extensional regime at the time, which excludes intensive seismic activity. The shelf environment also excluded the generation of tsunami waves because the depth was too shallow. Additionally, the Holy Cross Mountains region was surrounded in the Devonian by shallow-marine and stable elevated areas: the Nida Platform, the Opatkowice Platform and the Cracow Platform to the South, and the elevated Lublin-Lviv area to the NE. Thus, tsunami energy should have been absorbed by these regions if tsunamites would have occurred.


2011 ◽  
Vol 3 (1) ◽  
Author(s):  
Hadikusumah Hadikusumah ◽  
J. D. Lekalete

<p>Research of physical oceanographic conditions post-tsunami was carried out and subsequently compared with the pre-tsunami 1998. Measurement of suhu, salinity and light transmission was conducted by CTDSBE911pls Model. Results showed that the flow in the Straits of Malacca flowed into the northwest and turned back into the Strait of Bengal and the next rotation into the flow of waters along the west coast of Nangro Aceh Darusalam (NAD). The mainstream off coast NAD in the Indian Ocean flowed to the northwest. Upper thermocline layer (17 m to 50 m) moved upward in 2005 and 2006 compared with previous data 1998 (90 m to 125 m). The moving upward thermocline in 2006 was allegedly due to the influence of Indian Ocean Dipole (IOD) positive. This requires further verification through long-term data collection to determine the monthly and annual variations, which will be compared with previous research. Light transmission (Tx) in 2005 from the surface to near the bottom (water column) was found lower than the year 1998 and 2006. This result was allegedly caused by resuspension from the seabed by energy turbulent produced by the tsunami. Heat content between 5 to 65 m depth in 2005 was higher than in 1998 and 2006. The higher heat content during the year of 2005 (post tsunami) was caused by friction due to the influence of tsunami energy, which predominantly found in the mixed layer depth. Type of water masses in the study area was a mixing between the local water mass, Malacca Strait Water (MSA), Bay of Bengal Water (BBW) under the influence of Arab Waters (AW), and the Indian Deep Water (IDW).</p><p>Keywords: current, thermocline, heat content, watermass type, and Nangro Aceh Darusalam</p>


Sign in / Sign up

Export Citation Format

Share Document