seafloor deformation
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 10)

H-INDEX

8
(FIVE YEARS 1)

Author(s):  
Raquel P. Felix ◽  
Judith A. Hubbard ◽  
James D. P. Moore ◽  
Adam D. Switzer

ABSTRACT The frontal sections of subduction zones are the source of a poorly understood hazard: “tsunami earthquakes,” which generate larger-than-expected tsunamis given their seismic shaking. Slip on frontal thrusts is considered to be the cause of increased wave heights in these earthquakes, but the impact of this mechanism has thus far not been quantified. Here, we explore how frontal thrust slip can contribute to tsunami wave generation by modeling the resulting seafloor deformation using fault-bend folding theory. We then quantify wave heights in 2D and expected tsunami energies in 3D for both thrust splays (using fault-bend folding) and down-dip décollement ruptures (modeled as elastic). We present an analytical solution for the damping effect of the water column and show that, because the narrow band of seafloor uplift produced by frontal thrust slip is damped, initial tsunami heights and resulting energies are relatively low. Although the geometry of the thrust can modify seafloor deformation, water damping reduces these differences; tsunami energy is generally insensitive to thrust ramp parameters, such as fault dip, geological evolution, sedimentation, and erosion. Tsunami energy depends primarily on three features: décollement depth below the seafloor, water depth, and coseismic slip. Because frontal ruptures of subduction zones include slip on both the frontal thrust and the down-dip décollement, we compare their tsunami energies. We find that thrust ramps generate significantly lower energies than the paired slip on the décollement. Using a case study of the 25 October 2010 Mw 7.8 Mentawai tsunami earthquake, we show that although slip on the décollement and frontal thrust together can generate the required tsunami energy, <10% was contributed by the frontal thrust. Overall, our results demonstrate that the wider, lower amplitude uplift produced by décollement slip must play a dominant role in the tsunami generation process for tsunami earthquakes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
F. Estrada ◽  
J. M. González-Vida ◽  
J. A. Peláez ◽  
J. Galindo-Zaldívar ◽  
S. Ortega ◽  
...  

AbstractTsunamis are triggered by sudden seafloor displacements, and usually originate from seismic activity at faults. Nevertheless, strike-slip faults are usually disregarded as major triggers, as they are thought to be capable of generating only moderate seafloor deformation; accordingly, the tsunamigenic potential of the vertical throw at the tips of strike-slip faults is not thought to be significant. We found the active dextral NW–SE Averroes Fault in the central Alboran Sea (westernmost Mediterranean) has a historical vertical throw of up to 5.4 m at its northwestern tip corresponding to an earthquake of Mw 7.0. We modelled the tsunamigenic potential of this seafloor deformation by Tsunami-HySEA software using the Coulomb 3.3 code. Waves propagating on two main branches reach highly populated sectors of the Iberian coast with maximum arrival heights of 6 m within 21 and 35 min, which is too quick for current early-warning systems to operate successfully. These findings suggest that the tsunamigenic potential of strike-slip faults is more important than previously thought, and should be taken into account for the re-evaluation of tsunami early-warning systems.


2021 ◽  
Vol 7 (32) ◽  
pp. eabg8659
Author(s):  
Valentí Sallarès ◽  
Manel Prada ◽  
Sebastián Riquelme ◽  
Adrià Meléndez ◽  
Alcinoe Calahorrano ◽  
...  

Large earthquake ruptures propagating up to areas close to subduction trenches are infrequent, but when they occur, they heavily displace the ocean seafloor originating destructive tsunamis. The current paradigm is that the large seafloor deformation is caused by local factors reducing friction and increasing megathrust fault slip, or prompting the activation of ancillary faults or energy sources. As alternative to site-specific models, it has been proposed that large shallow slip could result from depth-dependent rock rigidity variations. To confront both hypotheses, here, we map elastic rock properties across the rupture zone of the MS7.0-MW7.7 1992 Nicaragua tsunami earthquake to estimate a property-compatible finite fault solution. The obtained self-consistent model accounts for trenchward increasing slip, constrains stress drop, and explains key tsunami earthquake characteristics such as long duration, high-frequency depletion, and magnitude discrepancy. The confirmation that these characteristics are all intrinsic attributes of shallow rupture opens new possibilities to improve tsunami hazard assessment.


2021 ◽  
Author(s):  
F. Estrada ◽  
J. M. González-Vida ◽  
J. A. Peláez ◽  
J. Galindo-Zaldívar ◽  
S. Ortega ◽  
...  

Abstract Tsunamis are triggered by sudden seafloor displacements, and usually originate from seismic activity at faults. Nevertheless, strike-slip faults are usually disregarded as major triggers, as they are thought to be capable of generating only moderate seafloor deformation; accordingly, the tsunamigenic potential of the vertical throw at the tips of strike-slip faults is not thought to be significant. We found the active dextral NW-SE Averroes Fault in the central Alboran Sea (westernmost Mediterranean) has a historical vertical throw of up to 5.4 m at its northwestern tip corresponding to an earthquake of Mw 7.0. We modelled the tsunamigenic potential of this seafloor deformation by Tsunami-HySEA software using the Coulomb 3.3 code. Waves propagating on two main branches reach highly populated sectors of the Iberian coast with maximum arrival heights of 6 m within 21 and 35 min, which is too quick for current early-warning systems to operate successfully. These findings suggest that the tsunamigenic potential of strike-slip faults is more important than previously thought, and justify the re-evaluation of tsunami early-warning systems worldwide.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yoichiro Dobashi ◽  
Daisuke Inazu

We investigated ocean bottom pressure (OBP) observation data at six plate subduction zones around the Pacific Ocean. The six regions included the Hikurangi Trough, the Nankai Trough, the Japan Trench, the Aleutian Trench, the Cascadia Subduction Zone, and the Chile Trench. For the sake of improving the detectability of seafloor deformation using OBP observations, we used numerical ocean models to represent realistic oceanic variations, and subtracted them from the observed OBP data. The numerical ocean models included four ocean general circulation models (OGCMs) of HYCOM, GLORYS, ECCO2, and JCOPE2M, and a single-layer ocean model (SOM). The OGCMs are mainly driven by the wind forcing. The SOM is driven by wind and/or atmospheric pressure loading. The modeled OBP was subtracted from the observed OBP data, and root-mean-square (RMS) amplitudes of the residual OBP variations at a period of 3–90 days were evaluated by the respective regions and by the respective numerical ocean models. The OGCMs and SOM driven by wind alone (SOMw) contributed to 5–27% RMS reduction in the residual OBP. When SOM driven by atmospheric pressure alone (SOMp) was added to the modeled OBP, residual RMS amplitudes were additionally reduced by 2–15%. This indicates that the atmospheric pressure is necessary to explain substantial amounts of observed OBP variations at the period. The residual RMS amplitudes were 1.0–1.7 hPa when SOMp was added. The RMS reduction was relatively effective as 16–42% at the Hikurangi Trough, the Nankai Trough, and the Japan Trench. The residual RMS amplitudes were relatively small as 1.0–1.1 hPa at the Nankai Trough and the Chile Trench. These results were discussed with previous studies that had identified slow slips using OBP observations. We discussed on further accurate OBP modeling, and on improving detectability of seafloor deformation using OBP observation arrays.


2020 ◽  
Vol 8 ◽  
Author(s):  
F. Romano ◽  
S. Lorito ◽  
T. Lay ◽  
A. Piatanesi ◽  
M. Volpe ◽  
...  

Finite-fault models for the 2010 Mw 8.8 Maule, Chile earthquake indicate bilateral rupture with large-slip patches located north and south of the epicenter. Previous studies also show that this event features significant slip in the shallow part of the megathrust, which is revealed through correction of the forward tsunami modeling scheme used in tsunami inversions. The presence of shallow slip is consistent with the coseismic seafloor deformation measured off the Maule region adjacent to the trench and confirms that tsunami observations are particularly important for constraining far-offshore slip. Here, we benchmark the method of Optimal Time Alignment (OTA) of the tsunami waveforms in the joint inversion of tsunami (DART and tide-gauges) and geodetic (GPS, InSAR, land-leveling) observations for this event. We test the application of OTA to the tsunami Green’s functions used in a previous inversion. Through a suite of synthetic tests we show that if the bias in the forward model is comprised only of delays in the tsunami signals, the OTA can correct them precisely, independently of the sensors (DART or coastal tide-gauges) and, to the first-order, of the bathymetric model used. The same suite of experiments is repeated for the real case of the 2010 Maule earthquake where, despite the results of the synthetic tests, DARTs are shown to outperform tide-gauges. This gives an indication of the relative weights to be assigned when jointly inverting the two types of data. Moreover, we show that using OTA is preferable to subjectively correcting possible time mismatch of the tsunami waveforms. The results for the source model of the Maule earthquake show that using just the first-order modeling correction introduced by OTA confirms the bilateral rupture pattern around the epicenter, and, most importantly, shifts the inferred northern patch of slip to a shallower position consistent with the slip models obtained by applying more complex physics-based corrections to the tsunami waveforms. This is confirmed by a slip model refined by inverting geodetic and tsunami data complemented with a denser distribution of GPS data nearby the source area. The models obtained with the OTA method are finally benchmarked against the observed seafloor deformation off the Maule region. We find that all of the models using the OTA well predict this offshore coseismic deformation, thus overall, this benchmarking of the OTA method can be considered successful.


2020 ◽  
Vol 8 ◽  
Author(s):  
Prospero De Martino ◽  
Sergio Guardato ◽  
Gian Paolo Donnarumma ◽  
Mario Dolce ◽  
Tiziana Trombetti ◽  
...  

We present 4 years of continuous seafloor deformation measurements carried out in the Campi Flegrei caldera (Southern Italy), one of the most hazardous and populated volcanic areas in the world. The seafloor sector of the caldera has been monitored since early 2016 by the MEDUSA marine research infrastructure, consisting of four instrumented buoys installed where sea depth is less than 100 m. Each MEDUSA buoy is equipped with a cabled, seafloor module with geophysical and oceanographic sensors and a subaerial GPS station providing seafloor deformation and other environmental measures. Since April 2016, the GPS vertical displacements at the four buoys show a continuous uplift of the seafloor with cumulative measured uplift ranging between 8 and 20 cm. Despite the data being affected by environmental noise associated with sea and meteorological conditions, the horizontal GPS displacements on the buoys show a trend coherent with a radial deformation pattern. We use jointly the GPS horizontal and vertical velocities of seafloor and on-land deformations for modeling the volcanic source, finding that a spherical source fits best the GPS data. The geodetic data produced by MEDUSA has now been integrated with the data flow of other monitoring networks deployed on land at Campi Flegrei.


2020 ◽  
Author(s):  
P. Hatchell ◽  
H. Ruiz ◽  
A. Libak ◽  
R. Agersborg ◽  
B. Nolan

2020 ◽  
Author(s):  
P. Hatchell ◽  
H. Ruiz ◽  
A. Libak ◽  
R. Agersborg ◽  
B. Nolan

2019 ◽  
Vol 124 ◽  
pp. 14-24 ◽  
Author(s):  
Florian Petersen ◽  
Heidrun Kopp ◽  
Dietrich Lange ◽  
Katrin Hannemann ◽  
Morelia Urlaub

Sign in / Sign up

Export Citation Format

Share Document