scholarly journals THE DISTRIBUTION OF BENTHIC FORAMINIFERA IN THE CELTIC SEA: THE SIGNIFICANCE OF SEASONAL STRATIFICATION

2003 ◽  
Vol 33 (1) ◽  
pp. 32-61 ◽  
Author(s):  
G. A. Scott
2021 ◽  
Author(s):  
Jacob Noble ◽  
Alix Cage ◽  
Olivia Beavers ◽  
Bradley Sparks ◽  
Mark Furze ◽  
...  

<p>Shelf seas account for around 10-30% of ocean productivity, 30-50% of inorganic carbon burial and up to 80% of organic carbon storage (Sharples et al., 2019); as such, shelf-sea sediments are a potential store of carbon and could play an important role in the ‘blue’ carbon cycle, and thus global climate. UK shelf-sea hydrography is dominated by seasonal stratification which drives productivity; however, stratification evolved with sea-level and tidal dynamic changes over the Holocene epoch on the UK shelf, and thus carbon stores will have changed over time. These shallow marine environments are typically seen as erosional environments and have therefore been somewhat overlooked in terms of palaeoenvironments with only a few studies from the UK continental shelf (e.g. Austin and Scourse, 1997). Here we use a core collected from the Celtic Deep, on the UK shelf, to explore environmental change, and the evolution of stratification in this setting and the potential role it plays in the global carbon cycle.</p><p>JC106-052PC, a 7.5m long marine sediment core, was recovered in 2018 at a water-depth of 116 m from the Celtic Deep (a relatively deep trough in the Celtic Sea between Britain and Ireland) as part of the BRITICE project. A radiocarbon date of 10,435 ±127 years cal BP at 4.1m suggests the core covers the Holocene epoch and preceding deglacial period. Preliminary multiproxy data from this expanded archive (ITRAX XRF, organic content, benthic foraminifera assemblages) points to changing environmental conditions and productivity potentially reflecting the evolution of seasonal stratification in the Celtic Sea over the Holocene. Work currently focuses on increasing the resolution of the benthic foraminifera record of JC106-052PC, extending the record into the deglacial period, and applying a benthic foraminifera transfer function approach to estimate sea-surface temperature of the Celtic Sea during the Holocene and deglacial period.  </p><p>This study aims to increase our understanding of the shelf-sea dynamics and productivity of the Celtic Sea over the last deglacial to Holocene period. By elucidating the response of the Celtic Sea to changing sea level and oceanographic conditions, and its capacity to act as a carbon store, we can better understand the role of other shelf environments, potentially benefiting global studies of palaeoclimate and future climate change. </p>


2002 ◽  
Vol 191 (3-4) ◽  
pp. 119-145 ◽  
Author(s):  
J.D. Scourse ◽  
W.E.N. Austin ◽  
B.T. Long ◽  
D.J. Assinder ◽  
D. Huws

1988 ◽  
Vol 62 (01) ◽  
pp. 1-8 ◽  
Author(s):  
Ronald E. Martin

The utility of benthic foraminifera in bathymetric interpretation of clastic depositional environments is well established. In contrast, bathymetric distribution of benthic foraminifera in deep-water carbonate environments has been largely neglected. Approximately 260 species and morphotypes of benthic foraminifera were identified from 12 piston core tops and grab samples collected along two traverses 25 km apart across the northern windward margin of Little Bahama Bank at depths of 275-1,135 m. Certain species and operational taxonomic groups of benthic foraminifera correspond to major near-surface sedimentary facies of the windward margin of Little Bahama Bank and serve as reliable depth indicators. Globocassidulina subglobosa, Cibicides rugosus, and Cibicides wuellerstorfi are all reliable depth indicators, being most abundant at depths >1,000 m, and are found in lower slope periplatform aprons, which are primarily comprised of sediment gravity flows. Reef-dwelling peneroplids and soritids (suborder Miliolina) and rotaliines (suborder Rotaliina) are most abundant at depths <300 m, reflecting downslope bottom transport in proximity to bank-margin reefs. Small miliolines, rosalinids, and discorbids are abundant in periplatform ooze at depths <300 m and are winnowed from the carbonate platform. Increased variation in assemblage diversity below 900 m reflects mixing of shallow- and deep-water species by sediment gravity flows.


2010 ◽  
Vol 2 (1) ◽  
Author(s):  
Suhartati M. Natsir

Foraminifera are generally live in sea water with various sizes. These organisms consist of planktonic and benthic foraminifera. Geological activity on plutonic and volcanic with vomiting magma is transpiring on, and then affects sedimentation and foraminiferal abundance of Ambon Bay. The study was determined to study the abundance and distribution of foraminifera based on the sediment characteristic of Ambon Bay. Sample collected in 2007 of Ambon Bay showed that only 29 samples of 50 samples containing foraminifera. The collected sediments have 86 species of foraminifera, consisting 61 species of benthic foraminifera and 25 species of planktonic foraminifera. The dominant benthic foraminifera in the surface sediment of Ambon bay were Amphistegina lessonii, Ammoniabeccarii,Elphidium craticulatum,Operculina ammonoides and Quinqueloculina parkery. The planktonic foraminifera that were frequently collected from the bay were Globorotalia tumida, Globoquadrina pseudofoliata, Globigerinoides pseudofoliata, Globigerinoides cyclostomus dan Pulleniatina finalis. Generally, the species dwelled as abundant on substrate sand, whereas the areas within substrate mud have no foraminifera lie on them. Keywords: Foraminifera, Abundance, Sediment, Ambon Bay


2019 ◽  
Author(s):  
Marcela Costa POMPEU ◽  
Anna Andressa Evangelista NOGUEIRA ◽  
Juan Sebastian Gomez NEITA ◽  
Nils Advin ASP NETO

Sign in / Sign up

Export Citation Format

Share Document