age model
Recently Published Documents


TOTAL DOCUMENTS

421
(FIVE YEARS 139)

H-INDEX

35
(FIVE YEARS 5)

2022 ◽  
Author(s):  
V.H. Isakson ◽  
et al. ◽  
M.D. Schmitz

<div>Figure S1. Thin-section photomicrographs for lithologies of the Bannock Volcanic Member and Scout Mountain Member of the Pocatello Formation exposed at Scout Mountain, Idaho. Sample numbers are illustrated on the stratigraphic section of Figure 4. Field of view is 24 mm × 40 mm. Tables S1–S3: LA-ICPMS U-Pb isotope and trace element concentration data. Table S4: CA-IDTIMS U-Pb isotope data.<br></div>


2022 ◽  
Author(s):  
V.H. Isakson ◽  
et al. ◽  
M.D. Schmitz

<div>Figure S1. Thin-section photomicrographs for lithologies of the Bannock Volcanic Member and Scout Mountain Member of the Pocatello Formation exposed at Scout Mountain, Idaho. Sample numbers are illustrated on the stratigraphic section of Figure 4. Field of view is 24 mm × 40 mm. Tables S1–S3: LA-ICPMS U-Pb isotope and trace element concentration data. Table S4: CA-IDTIMS U-Pb isotope data.<br></div>


2022 ◽  
pp. 230-251
Author(s):  
Elhoucine Essefi

Previous works proposed different age models of sedimentation in Sebkha Lagoon of Boujmel leading to the setting of controversial interpretations of eustatic and climatic phases. The aim of this work is carrying out a geological correlation and an astrochronological calibration based on the Holocene cyclostratigraphy leading to the setting of an age model satisfying dates of climatic and eustatic phases identified in southern Tunisia, including the Anthropocene and the Great Acceleration. Along a 130 cm core, four major climatic phases were upward recorded.


2022 ◽  
pp. 217-234
Author(s):  
Elhoucine Essefi ◽  
Soumaya Hajji

This chapter aimed to investigate the record of climatic and environmental change in the sedimentary filling of sebkha Mhabeul and their effect on hydric and eolian erosion within the wetland and its watershed. Along a 37 cm core, the sedimentary, geochemical, and geophysical signals at the Holocene-Anthropocene transition were followed. Sampling was carried out each 1 cm to obtain 37 samples. All studied parameters and clustering techniques indicate that the first 7 cm represent the Anthropocene strata. According to the age model, this upper part of the core records the last 300 yrs. The sedimentary record of the Anthropocene is marked by an increasing rate of sedimentation, grain size fining, heavy metals (Pb, Cu, Ni, Mn, and Fe) enrichment, which is related to increased erosion. Other intrinsic parameters such as CE, pH, Na, K, and CaCO3 enhance sediment erodibility. The measurement of the magnetic susceptibility along a 37 cm core collected from the sebkha Mhabeul shows an obvious upward increase related to a high content of heavy metals for the first 7 cm.


2022 ◽  
Vol 14 (1) ◽  
Author(s):  
Sándor Gulyás ◽  
Andrea Torma ◽  
Norbert Pap ◽  
Pál Fodor ◽  
Máté Kitanics ◽  
...  

AbstractOne of the most influential rulers of the sixteenth century, Sultan Suleyman I, passed away and was buried temporarily near the fortress of Szigetvár in SW Hungary in 1566. Later, a memorial place was erected on the site in the second half of the sixteenth century. The complex was surrounded by a palisade system and a moat on its northern side. The site was fully destroyed in 1692, and the exact location vanished with time. Recent investigations of historical sources complemented by geophysical, archeological, and geoarcheological investigations managed to identify the location of the site, and probe corings revealed the moat system. This study presents the results of complex chronological, sedimentological, and geochemical investigations done on the sediments accumulated in the moat. Based on geoarcheological data, two major changes could have been noted in the nature of the deposit marking erosion and transportation of soil from the banks of the moat. Elevated concentrations of Fe and K, and high MS values mark the effects of fire on the deposit and accumulation of flue ash. A rise in heavy metals in these horizons is attributable to anthropogenic sources related to the destruction of the site. Chronological data comes from dateable artifacts reposited and 14C dates of charred cereal seeds. A Bayesian age model built using 14C ages constrained by written historical data on site use helped us to determine the age of moat construction and the referred erosion-accumulation events. The older event was dated around 1670, which is in line with historical records of the first siege of Szigetvár. The second event postdates 1684 and thus must correspond to the time of the site’s final siege and later destruction.


2021 ◽  
Author(s):  
◽  
Philippa Morris

<p>The Mw 7.8 Kaikōura earthquake of November 14th 2016 provided unprecedented opportunities to understand how the ground deforms during large magnitude strike-slip earthquakes. The re-excavation and extension of both halves of a displaced paleoseismic trench following this earthquake provided an opportunity to test, refine, and extend back in time the known late Holocene chronology of surface rupturing earthquakes on the Kekerengu Fault. As part of this thesis, 28 organic-bearing samples were collected from a suite of new paleoseismic trenches. Six of these samples were added to the preferred age model from Little et al. (2018); this updated age model is now based on 16 total samples. Including the 2016 earthquake, six surface rupturing earthquakes since ~2000 cal. B.P. are now identified and dated on the Kekerengu Fault. Based on the latest five events (E0 to E4), this analysis yields an updated mean recurrence interval estimate for the Kekerengu Fault of 375 ± 32 yrs (1σ) since ~1650 cal. B.P. The older, sixth event (E5) is not included in the preferred model, as it may not have directly preceded E4; however, if this additional event is incorporated into an alternative age model that embraces all six identified events, the mean recurrence interval estimate (considered a maximum) calculated is 433 ± 22 yrs (1σ) since ~2000 cal. B.P.   Comparison of structures on an identical trench wall logged both before and after the 2016 earthquake, and analysis of pre- and post-earthquake high resolution imagery and Digital Surface Models (DSMs), has allowed the quantification of where and how ~9 m of dextral-oblique slip was accommodated at this site during the earthquake. In addition to this, I analyse the coseismic structure of the adjoining segment of the 2016 ground rupture using detailed post-earthquake aerial orthophotography, to further investigate how geological surface structures (bulged-up moletrack structures) accommodated slip in the rupture zone. These combined analyses allowed me to identify two primary deformation mechanisms that accommodated the large coseismic slip of this earthquake, and the incremental effect of that slip on the structural geology of the rupture zone. These processes include: a) discrete slip along strike-slip faults that bound a narrow, highly deformed inner rupture zone; and b), distributed deformation within this inner rupture zone. The latter includes coseismic clockwise rotation of cohesive rafts of turf, soil and near-surface clay-rich sediment. During this process, these “turf rafts” detach from the underlying soil at a mean depth of ~0.7 m, shorten by ~2.5 m (in addition to shortening introduced by any local contractional heave), bulge upwards by < 1 m, and rotate clockwise by ~19° - while also separating from one another along fissures bounded by former (now rotated) synthetic Riedel faults. This rotational deformation accommodated ~3 m of dextral strike-slip (of a total of ~9 m), after which this rotation apparently ceased, regardless of the total slip or the local kinematics (degree of transpression) at any site. The remaining slip was transferred onto later forming, throughgoing faults as discrete displacement. Analysis of the morphology and amplitude of these moletracks suggests that an increase in the degree of transpression (value of contractional heave) at a site increases the magnitude of shortening and the finite longitudinal strain absorbed by the rotated turf rafts, but does not necessarily contribute to an increase in height (generally 0.33-0.53 m on all parts of the fault). Rather, the comparison of these moletracks with those described by other authors suggests that a more controlling factor on their height is the clay content and cohesion of material deformed into the moletracks.  Finally, comparison of the before and after cross-sections of the displaced paleoseismic trench has provided, for the first time, insight into how large magnitude strike-slip ruptures are expressed in the fault-orthogonal view typical of paleoseismic trenches. Although this rupture involved ~9 m of dextral strike-slip, the cross-sectional view of the re-excavated trenches was dominated by the much lesser component of fault-perpendicular contractional heave (~1.3 m) that occurred in 2016, which did not occur in previous paleoearthquakes at the same site (these were, by contrast, transtensional). This heave was expressed as up to ~2 m of fault-transverse shortening in the inner rupture zone of the trenches, while the ~9 m of strike-slip only created cm-scale offsets across faults. Previous earthquakes at the site were expressed as cm-dm scale, mostly normal dip-separations of sub-horizontal stratigraphic units across faults, suggesting that a change in local kinematics (of ~8°) must have occurred in 2016. Such a small kinematic change may drastically impact the overall ground expression of strike-slip earthquakes - producing also complicated structures including overprinting fault strands in the rupture zone (to a few metres depth). This information poses challenges for structural geologists and paleoseismologists when interpreting (the significance of) structures in future trench walls.</p>


2021 ◽  
Author(s):  
◽  
Philippa Morris

<p>The Mw 7.8 Kaikōura earthquake of November 14th 2016 provided unprecedented opportunities to understand how the ground deforms during large magnitude strike-slip earthquakes. The re-excavation and extension of both halves of a displaced paleoseismic trench following this earthquake provided an opportunity to test, refine, and extend back in time the known late Holocene chronology of surface rupturing earthquakes on the Kekerengu Fault. As part of this thesis, 28 organic-bearing samples were collected from a suite of new paleoseismic trenches. Six of these samples were added to the preferred age model from Little et al. (2018); this updated age model is now based on 16 total samples. Including the 2016 earthquake, six surface rupturing earthquakes since ~2000 cal. B.P. are now identified and dated on the Kekerengu Fault. Based on the latest five events (E0 to E4), this analysis yields an updated mean recurrence interval estimate for the Kekerengu Fault of 375 ± 32 yrs (1σ) since ~1650 cal. B.P. The older, sixth event (E5) is not included in the preferred model, as it may not have directly preceded E4; however, if this additional event is incorporated into an alternative age model that embraces all six identified events, the mean recurrence interval estimate (considered a maximum) calculated is 433 ± 22 yrs (1σ) since ~2000 cal. B.P.   Comparison of structures on an identical trench wall logged both before and after the 2016 earthquake, and analysis of pre- and post-earthquake high resolution imagery and Digital Surface Models (DSMs), has allowed the quantification of where and how ~9 m of dextral-oblique slip was accommodated at this site during the earthquake. In addition to this, I analyse the coseismic structure of the adjoining segment of the 2016 ground rupture using detailed post-earthquake aerial orthophotography, to further investigate how geological surface structures (bulged-up moletrack structures) accommodated slip in the rupture zone. These combined analyses allowed me to identify two primary deformation mechanisms that accommodated the large coseismic slip of this earthquake, and the incremental effect of that slip on the structural geology of the rupture zone. These processes include: a) discrete slip along strike-slip faults that bound a narrow, highly deformed inner rupture zone; and b), distributed deformation within this inner rupture zone. The latter includes coseismic clockwise rotation of cohesive rafts of turf, soil and near-surface clay-rich sediment. During this process, these “turf rafts” detach from the underlying soil at a mean depth of ~0.7 m, shorten by ~2.5 m (in addition to shortening introduced by any local contractional heave), bulge upwards by < 1 m, and rotate clockwise by ~19° - while also separating from one another along fissures bounded by former (now rotated) synthetic Riedel faults. This rotational deformation accommodated ~3 m of dextral strike-slip (of a total of ~9 m), after which this rotation apparently ceased, regardless of the total slip or the local kinematics (degree of transpression) at any site. The remaining slip was transferred onto later forming, throughgoing faults as discrete displacement. Analysis of the morphology and amplitude of these moletracks suggests that an increase in the degree of transpression (value of contractional heave) at a site increases the magnitude of shortening and the finite longitudinal strain absorbed by the rotated turf rafts, but does not necessarily contribute to an increase in height (generally 0.33-0.53 m on all parts of the fault). Rather, the comparison of these moletracks with those described by other authors suggests that a more controlling factor on their height is the clay content and cohesion of material deformed into the moletracks.  Finally, comparison of the before and after cross-sections of the displaced paleoseismic trench has provided, for the first time, insight into how large magnitude strike-slip ruptures are expressed in the fault-orthogonal view typical of paleoseismic trenches. Although this rupture involved ~9 m of dextral strike-slip, the cross-sectional view of the re-excavated trenches was dominated by the much lesser component of fault-perpendicular contractional heave (~1.3 m) that occurred in 2016, which did not occur in previous paleoearthquakes at the same site (these were, by contrast, transtensional). This heave was expressed as up to ~2 m of fault-transverse shortening in the inner rupture zone of the trenches, while the ~9 m of strike-slip only created cm-scale offsets across faults. Previous earthquakes at the site were expressed as cm-dm scale, mostly normal dip-separations of sub-horizontal stratigraphic units across faults, suggesting that a change in local kinematics (of ~8°) must have occurred in 2016. Such a small kinematic change may drastically impact the overall ground expression of strike-slip earthquakes - producing also complicated structures including overprinting fault strands in the rupture zone (to a few metres depth). This information poses challenges for structural geologists and paleoseismologists when interpreting (the significance of) structures in future trench walls.</p>


2021 ◽  
Author(s):  
Aisha H. Al-Suwaidi ◽  
Micha Ruhl ◽  
Hugh C. Jenkyns ◽  
Susana E. Damborenea ◽  
Miguel O. Manceñido ◽  
...  

Abstract The Pliensbachian–Toarcian boundary interval is characterized by a ~3‰ negative carbon-isotope excursion (CIE) in organic and inorganic marine and terrestrial archives from sections in Europe, such as Peniche (Portugal) and Hawsker Bottoms, Yorkshire (UK). A new high-resolution organic-carbon isotope record, illustrating the same chemostratigraphic feature, is presented from the Southern Hemisphere Arroyo Chacay Melehue section, Chos Malal, Argentina, corroborating the global significance of this disturbance to the carbon cycle. The negative carbon-isotope excursion, mercury and organic-matter enrichment is accompanied by high-resolution ammonite and nannofossil biostratigraphy together with U-Pb CA-ID-TIMS geochronology derived from intercalated volcanic ash beds. A new age of ~183.71 ± 0.40/-0.51 Ma for the Pliensbachian–Toarcian boundary, and 182.77 +0.11/-0.21 for the tenuicostatum–serpentinum zonal boundary, is assigned based on high-precision U-Pb zircon geochronology and a Bayesian Markov chain Monte Carlo (MCMC) stratigraphic age model.


Author(s):  
Nadezhda V. Shakhmatova ◽  

The article presents the statistics and the results of the sociological study conducted in Saratov, reveals the main trends and problems of working pensioners and shows their dynamics in Russia and Saratov region. It is shown that Saratov region can be attributed to the zone of demographic disaster, since the share of older people in the region reaches 28.2%, including working pensioners – 14% (every third pensionerMuscovite, every fourth pensioner-Russian). The annual indexation of pensions does not fully compensate the growth of prices. As a result, the pensioners make up almost a third of the poor population and are forced to earn extra money or continue to work. However, 49% of working pensioners cannot imagine themselves without work, which serves as a source of self-realization of their existing potential and brings satisfaction. The features of their lifestyle in the context of the prosperous old age model and effective problems of maintaining vitality are presented.


2021 ◽  
Author(s):  
◽  
Aidan Stuart Robert Allan

<p>This thesis presents a chemical and isotopic investigation of well-dated silicic tephra layers sourced from the Taupo Volcanic Zone (TVZ), central North Island, New Zealand, that were recovered from deep ocean sediment cores at Ocean Drilling Program Site 1123 (41 degrees 47.16' S, 171 degrees 29.94' W; 3290 m water depth), located approximately 1000 km east of the TVZ. The relative quiescence of the deep ocean sedimentary setting, the continuous supply of biogenic and terrigenous sediment and the favourable location of Site 1123 close to the main TVZ ash dispersal path have resulted in an extensive TVZ tephra record (70 Quaternary tephra layers preserved in 3 sediment cores) at Site 1123. This record extends and compliments the onshore record of silicic TVZ volcanism which has been obscured by erosion of non-consolidated volcanic material and burial of older units by younger volcanic deposits. The Site 1123 cores comprise an important paleo-oceanographic record for the Southwest Pacific Ocean and as a result of previous paleo-environmental studies, the Site 1123 tephras have been assigned orbitally tuned stable isotope ages that are more precise than is currently possible by any radiometric dating techniques. These features of the Site 1123 tephra record highlight its potential to be established as a type section for Quaternary tephrochronological studies in the New Zealand region. In addition, the continuous stratigraphy and precise age control of these tephras enables the Site 1123 record to be used as a petrogenetic archive to investigate changes in chemical and isotopic composition of these tephras that may be related to changes in the petrogenesis of TVZ silicic magmas during the last ~ 1.65 Ma. This thesis establishes major and trace element chemical 'fingerprints' for the Site 1123 tephras using traditional (electron probe microanalysis) and novel (laser ablation inductively coupled plasma mass spectrometry) in situ geochemical techniques. Trace element fingerprints are demonstrated to provide a more precise means of correlating and distinguishing between tephras with essentially identical major element chemistries. These fingerprints are used to refine the original Site 1123 composite stratigraphy and age model and identify a section of repeated sediments in the Site 1123 cores that have introduced a significant error into the original composite stratigraphy and age model for the interval ~1.1 to 1.4 Ma. Correlation of the tephra layers between the 3 sediment cores (1123A, B and C) establishes that ~37-38 individual tephra units are recorded with ages ranging from 1.655 Ma to 27.1 ka. Approximately 50% of the eruptive units and cumulative tephra thickness at the site were recorded during the first ~ 150 ka of silicic TVZ volcanism (1.65 to 1.50 Ma). The fragmentary onshore record does not preserve clear evidence for this early period of hyperactivity. Four broad silicic melt types are identified on the basis of chemistry and eruptive age. Trace element indices of fractional crystallisation suggests the origin of the four melt types is primarily due to differential degrees of fractional crystallisation of accessory zircon, hydrous mineral phases and Fe-Ti oxides. Sr-Nd-Pb isotopic compositions of 13 representative Site 1123 tephras cannot be generated using traditional models in which Torlesse meta-sedimentary rocks are the sole contaminant of mafic magmas. Instead the data support a model in which ascending TVZ basalts assimilate crustal rocks of both meta-greywacke terranes: firstly up to 15% of Waipapa crust is assimilated at depth, followed by assimilation of between 20 and 45% Torlesse crust at shallower levels. In this model the majority of Site 1123 tephras indicate a remarkably uniform amount of crust (~ 35%) with the most evolved sample requiring 45% crustal contribution. However, extensive fractional crystallisation (55-85%) is required to have accompanied crustal assimilation in order to drive the relatively low SiO2 compositions of these contaminated mafic magmas (SiO2 = 53-58 wt% after crustal contamination) to the high SiO2 rhyolite (74-78 wt%) compositions of the Site 1123 tephras. The large crustal contributions to TVZ silicic magmas (35-45%) implied by these data are high compared to large volume silicic magmas from different settings (e.g. Yemen-Ethiopia; Long Valley, USA), a feature that likely reflects the thin crust and high thermal flux into the continental crust beneath the TVZ.</p>


Sign in / Sign up

Export Citation Format

Share Document