middle eocene
Recently Published Documents


TOTAL DOCUMENTS

1817
(FIVE YEARS 400)

H-INDEX

56
(FIVE YEARS 8)

2022 ◽  
Vol 131 (1) ◽  
Author(s):  
Y Raghumani Singh ◽  
Arka Rudra ◽  
Sh Priyokumar Singh ◽  
Suryendu Dutta ◽  
M Sapana Devi ◽  
...  

PeerJ ◽  
2022 ◽  
Vol 10 ◽  
pp. e12713
Author(s):  
Nikolay A. Poyarkov ◽  
Tan Van Nguyen ◽  
Parinya Pawangkhanant ◽  
Platon V. Yushchenko ◽  
Peter Brakels ◽  
...  

Slug-eating snakes of the subfamily Pareinae are an insufficiently studied group of snakes specialized in feeding on terrestrial mollusks. Currently Pareinae encompass three genera with 34 species distributed across the Oriental biogeographic region. Despite the recent significant progress in understanding of Pareinae diversity, the subfamily remains taxonomically challenging. Here we present an updated phylogeny of the subfamily with a comprehensive taxon sampling including 30 currently recognized Pareinae species and several previously unknown candidate species and lineages. Phylogenetic analyses of mtDNA and nuDNA data supported the monophyly of the three genera Asthenodipsas, Aplopeltura, and Pareas. Within both Asthenodipsas and Pareas our analyses recovered deep differentiation with each genus being represented by two morphologically diagnosable clades, which we treat as subgenera. We further apply an integrative taxonomic approach, including analyses of molecular and morphological data, along with examination of available type materials, to address the longstanding taxonomic questions of the subgenus Pareas, and reveal the high level of hidden diversity of these snakes in Indochina. We restrict the distribution of P. carinatus to southern Southeast Asia, and recognize two subspecies within it, including one new subspecies proposed for the populations from Thailand and Myanmar. We further revalidate P. berdmorei, synonymize P. menglaensis with P. berdmorei, and recognize three subspecies within this taxon, including the new subspecies erected for the populations from Laos and Vietnam. Furthermore, we describe two new species of Pareas from Vietnam: one belonging to the P. carinatus group from southern Vietnam, and a new member of the P. nuchalis group from the central Vietnam. We provide new data on P. temporalis, and report on a significant range extension for P. nuchalis. Our phylogeny, along with molecular clock and ancestral area analyses, reveal a complex diversification pattern of Pareinae involving a high degree of sympatry of widespread and endemic species. Our analyses support the “upstream” colonization hypothesis and, thus, the Pareinae appears to have originated in Sundaland during the middle Eocene and then colonized mainland Asia in early Oligocene. Sundaland and Eastern Indochina appear to have played the key roles as the centers of Pareinae diversification. Our results reveal that both vicariance and dispersal are responsible for current distribution patterns of Pareinae, with tectonic movements, orogeny and paleoclimatic shifts being the probable drivers of diversification. Our study brings the total number of Pareidae species to 41 and further highlights the importance of comprehensive taxonomic revisions not only for the better understanding of biodiversity and its evolution, but also for the elaboration of adequate conservation actions.


2021 ◽  
Vol 15 (1) ◽  
pp. 71
Author(s):  
Salvador Reguant

The bryozoan species present in each Paleocene and Eocene chronostratigraphic unit of the Atlantic and Gulf Coastal Plains in North America, and the Paris Basin in France are analysed. The comparison between species exclusive to each unit considered (EX), non-exclusive species, but appearing for the first (FA) or last time (LA), species existing before and after the unit considered (BA), and, finally, the total number of species present (T), shows the chronostratigraphic discriminating value of this fauna within the Paleogene. The same analysis was previously applied to bryozoan Paleocene and Eocene families and genera, according to the inormation. It is also interesting to note the significant renewal of bryozoan fauna in both basins during the Middle Eocene. 


2021 ◽  
Vol 4 (6) ◽  
Author(s):  
ELENA M. DAVIDIAN ◽  
ANDRANIK R. MANUKYAN ◽  
SERGEY A. BELOKOBYLSKIJ

The new fossil genus and species, Sakhalinoctonus alexrasnitsyni Davidian, gen. et sp. nov., of hymenopteran parasitoids of aphids from the subfamily Aphidiinae (Braconidae) is described from the Middle Eocene Sakhalinian amber. This new genus is similar with the extinct Protacanthoides Mackauer, 1961 and Promonoctonia Starý, 1973 as well as with the extant Calaphidius Mackauer, 1961, Indaphidius Starý, 1979, Aclitus Foerster, 1862 and Archaphidus Starý & Sсhlinger, 1967, and differs from them by the small number of antennal segments, details of wing venation and propodeum areolation, the shape and pubescence of the ovipositor sheaths.


2021 ◽  
Author(s):  
Irfan Sh. Asaad ◽  

Lithostratigraphy and microfacies analysis of the Avanah Formation (Middle Eocene) were studied in the Gomaspan section in the Bina Bawi anticline, northeast of Erbil city, Kurdistan Region, Iraq. The field observations refer that the formation attains 56 m of medium to thick bedded yellow limestone, grey dolomitic limestone and blue marly dolomitic limestone interbedded with thin beds of blue marl and dark grey shale with an interval of sandy limestone in the middle part and thin to medium bedded limestone interbedded with red mudstone. The petrographic study of 29 thin sections of Avanah carbonates revealed that the majority of the matrix is carbonate mud (micrite) with few microspar. The skeletal grains include benthic foraminifera, dasycladacean green algae, ostracods, calcispheres, pelecypods, rare planktonic foraminifera and bryozoa in addition to bioclasts. Non-skeletal grains encompass peloids, oncoids, intraclasts and extraclasts with common monocrystalline quartz. Based on the field observation and petrographic analysis, three different lithostratigraphic units were identified. They are in ascending order: A-Thick bedded dolomitic marly limestone interbedded with shale. B- Bedded dolomitic limestone interbedded with shale and marl. C- Thin to medium bedded limestone interbedded with red mudstone. Depending on detailed microfacies analysis of carbonate rocks, three main microfacies and 12 submicrofacies are recognized. From the sum of all petrographic, facies, textural analyses, it is concluded that Avanah Formation in Gomaspan section, was deposited in shallow marine environment, semi restricted lagoon, in lower and upper parts and open lagoon environment in the middle part interval.


2021 ◽  
Author(s):  
Irfan Sh. Asaad ◽  

Lithostratigraphy and microfacies analysis of the Avanah Formation (Middle Eocene) were studied in the Gomaspan section in the Bina Bawi anticline, northeast of Erbil city, Kurdistan Region, Iraq. The field observations refer that the formation attains 56 m of medium to thick bedded yellow limestone, grey dolomitic limestone and blue marly dolomitic limestone interbedded with thin beds of blue marl and dark grey shale with an interval of sandy limestone in the middle part and thin to medium bedded limestone interbedded with red mudstone. The petrographic study of 29 thin sections of Avanah carbonates revealed that the majority of the matrix is carbonate mud (micrite) with few microspar. The skeletal grains include benthic foraminifera, dasycladacean green algae, ostracods, calcispheres, pelecypods, rare planktonic foraminifera and bryozoa in addition to bioclasts. Non-skeletal grains encompass peloids, oncoids, intraclasts and extraclasts with common monocrystalline quartz. Based on the field observation and petrographic analysis, three different lithostratigraphic units were identified. They are in ascending order: A-Thick bedded dolomitic marly limestone interbedded with shale. B- Bedded interbedded with red mudstone. Depending on detailed microfacies analysis of carbonate rocks, three main microfacies and 12 submicrofacies are recognized. From the sum of all petrographic, facies, textural analyses, it is concluded that Avanah Formation in Gomaspan section, was deposited in shallow marine environment, semi restricted lagoon, in lower and upper parts and open lagoon environment in the middle part interval.


2021 ◽  
Author(s):  
◽  
Damian Orr

<p>Reinga Basin is located northwest of New Zealand, along strike structurally from Northland and has a surface area of ~150,000 km². The basin contains deformed Cretaceous and Cenozoic strata, flat unconformities interpreted as sea level-modulated erosion surfaces and is intruded by volcanics. Persistent submarine conditions and moderate water depths has led to preservation of fossil-rich bathyal sedimentary records. This thesis presents the first seismic-stratigraphic analysis tied to dredged rock samples and recent International Ocean Discovery Program (IODP) drilling. The Cenozoic tectonic evolution of Reinga Basin comprises four main phases. (1) Folding and uplift from lower bathyal water depths occurred at 56-43 Ma along West Norfolk Ridge to produce wave ravinement surfaces. This phase of deformation in Reinga Basin pre-dates tectonic events onshore New Zealand. (2) Basin-wide 39-34 Ma compression and reverse faulting exposed early to middle Eocene strata at the seabed. This phase of deformation is also observed farther south in Taranaki. (3) Oligocene uplift is recorded by late Oligocene shallow-water fauna at Site U1508, and led to a 6 Myr hiatus (34-28 Ma) associated with flat wave ravinement surfaces nearby. The unconformity is temporally associated with: normal faulting near West Norfolk Ridge that created topography of Wanganella Ridge; onset of Reinga Basin volcanism; and emplacement of South Maria Allochthon. Thin-skinned deformation and volcanism post-date thick-skinned reverse faulting and folding. The end of reverse faulting near South Maria Ridge is determined from undeformed Oligocene strata that have subsided 1500-2000 m since 36-30 Ma. (4) During the final phase of Reinga Basin deformation, South Maria Ridge subsided ~900-1900 m from middle shelf to bathyal depths from 23-19 Ma. Deformation migrated southeastwards, culminating in Northland Allochthon emplacement (23-20 Ma) and onshore arc volcanism at 23-12 Ma. Eocene onset of tectonic activity in northern New Zealand is shown to be older than previously recognised and it was broadly synchronous with other events related to subduction initiation and plate motion change elsewhere in the western Pacific.</p>


2021 ◽  
Author(s):  
◽  
Damian Orr

<p>Reinga Basin is located northwest of New Zealand, along strike structurally from Northland and has a surface area of ~150,000 km². The basin contains deformed Cretaceous and Cenozoic strata, flat unconformities interpreted as sea level-modulated erosion surfaces and is intruded by volcanics. Persistent submarine conditions and moderate water depths has led to preservation of fossil-rich bathyal sedimentary records. This thesis presents the first seismic-stratigraphic analysis tied to dredged rock samples and recent International Ocean Discovery Program (IODP) drilling. The Cenozoic tectonic evolution of Reinga Basin comprises four main phases. (1) Folding and uplift from lower bathyal water depths occurred at 56-43 Ma along West Norfolk Ridge to produce wave ravinement surfaces. This phase of deformation in Reinga Basin pre-dates tectonic events onshore New Zealand. (2) Basin-wide 39-34 Ma compression and reverse faulting exposed early to middle Eocene strata at the seabed. This phase of deformation is also observed farther south in Taranaki. (3) Oligocene uplift is recorded by late Oligocene shallow-water fauna at Site U1508, and led to a 6 Myr hiatus (34-28 Ma) associated with flat wave ravinement surfaces nearby. The unconformity is temporally associated with: normal faulting near West Norfolk Ridge that created topography of Wanganella Ridge; onset of Reinga Basin volcanism; and emplacement of South Maria Allochthon. Thin-skinned deformation and volcanism post-date thick-skinned reverse faulting and folding. The end of reverse faulting near South Maria Ridge is determined from undeformed Oligocene strata that have subsided 1500-2000 m since 36-30 Ma. (4) During the final phase of Reinga Basin deformation, South Maria Ridge subsided ~900-1900 m from middle shelf to bathyal depths from 23-19 Ma. Deformation migrated southeastwards, culminating in Northland Allochthon emplacement (23-20 Ma) and onshore arc volcanism at 23-12 Ma. Eocene onset of tectonic activity in northern New Zealand is shown to be older than previously recognised and it was broadly synchronous with other events related to subduction initiation and plate motion change elsewhere in the western Pacific.</p>


Sign in / Sign up

Export Citation Format

Share Document