Stratabound copper sulfides in a banded iron-formation and in basaltic tuffs in the early Precambrian Isua supracrustal belt, West Greenland

1979 ◽  
Vol 74 (1) ◽  
pp. 45-52 ◽  
Author(s):  
P. W. U. Appel
2013 ◽  
Vol 363 ◽  
pp. 192-203 ◽  
Author(s):  
Andrew D. Czaja ◽  
Clark M. Johnson ◽  
Brian L. Beard ◽  
Eric E. Roden ◽  
Weiqiang Li ◽  
...  

Author(s):  
Adam A. Garde ◽  
Julie A. Hollis

The two adjacent Kangaatsiaq and Ikamiut map sheets cover a coastal area of central West Greenland in the northern part of the Palaeoproterozoic Nagssugtoqidian orogen. The map area is part of the Aasiaat domain, which almost entirely consists of Neoarchaean orthogneisses with intercalated metamorphosed volcano-sedimentary belts. The Aasiaat domain was partially reworked during the Nagssugtoqidian orogeny, but Palaeoproterozoic components are restricted to mafic dykes, the ≤1904 ± 8 Ma (2σ) Naternaq supracrustal belt east of Kangaatsiaq, and remnants of a c . 1850 Ma Palaeoproterozoic ocean-floor – arc-trench association on small islands north-east of Aasiaat. Undated, lithologically similar rocks occur on Hunde Ejlande north of Aasiaat. The Archaean volcano-sedimentary belts are up to 2 km thick and comprise fine-grained mafic and minor, intermediate amphibolite of ex- and intrusive origin, gabbro, leucogabbro-anorthosite, and biotite-garnet schist with common sillimanite pseudomorphs after andalusite. The c . 2.8 Ga Archaean orthogneiss is largely tonalitic besides minor dioritic and granodioritic components, and preserves intrusive relationships with some of the supracrustal belts. Sheet-like bodies of late-kinematic crustal melt granites are up to about 10 km in length and 2 km thick. One of these has yielded a zircon Pb-Pb age of 2748 ± 19 Ma (2σ). Up to kilometre-thick units of quartzo-feldspathic and locally garnet-bearing paragneisses also occur, some of which are younger than the orthogneisses. The Aasiaat domain has undergone two Archaean orogenic episodes, separated by injection of mafic dykes and sedimentation at its margins. Archaean deformation resulted in kilometre-scale, tight to isoclinals folds refolded by upright to overturned folds, and its southern part reached granulite facies P–T conditions with widespread partial melting. The Aasiaat domain also underwent heating during the Nagssugtoqidian orogeny, but only its northern part was tectonically reworked, resulting in an intense E–W- to NNE–SSW-trending structural grain associated with subhorizontal extension lineation. The Palaeoproterozoic Naternaq supracrustal belt in the eastern part of the Kangaatsiaq map area has a complex synformal structure and displays a prominent structural discordance against the underlying Archaean rocks; the belt also contains a second phase of SE-plunging, overturned folds. The Palaeoproterozoic ocean-floor – arc trench association on islands north-east of Aasiaat comprises pillow lava, manganiferous chlorite schist, chert, banded iron formation, graded aluminous schist, and siliceous sandstone, and points to the existence of a palaeosuture in this area. A Palaeogene picritic sill complex and a small exposure of sandstone form the c . 15 km long island group of Kitsissunnguit / Gronne Ejland in the north-eastern Ikamiut map area. Two contem-poraneous, N–S-trending mafic dykes were emplaced into the basement rocks south-west of the islands. One of these was hydraulically chilled and fractured during its emplacement, presumably due to contact with meteoric or sea water. Widespread hydrothermal alteration occurs along faults and joints in the basement rocks in the northern archipelago. The alteration may have been caused by circulation of magmatically heated meteoric or sea water during the development of the Cretaceous–Paleocene basalt province in West Greenland. No deposits of economic interest have been found in the Archaean rocks within the map area. A massive sulphide deposit in the Naternaq supracrustal belt was discovered and explored in the 1960s by Kryolitselskabet Oresund A/S, and a VHMS-style copper-gold-zinc mineralisation was reported in 2004 from Kitsissuarsuit / Hunde Ejlande by a local inhabitant. The potential for ornamental rocks is largely unexplored.


1983 ◽  
Vol 112 ◽  
pp. 5-22
Author(s):  
A.P Nutman ◽  
D Bridgwater ◽  
E Dimroth ◽  
R.C.O Gill ◽  
M Rosing

A coherent stratigraphy is recognised in the highly deformed, amphibolite facies early Archaean Isua supracrustal belt. The supracrustal belt consists of layered rocks (in which sedimentary structures are locally preserved), ultramafic rocks and units of garbenschiefer (a massive Mg-Al rich, leucoamphibolite). The layered supracrustal rocks form two sequences, which are separated from each other tectonically. When folding is taken into account, these sequences are now less than 200 m thick. Sequence A forms most of the belt. In it there is a transition upwards from predominantly layered amphibolites with banded iron formation horizons to calc-silicate rocks, carbonates and layered felsic metasediments. Sequence B is restricted to the western edge of the eastern part of the supracrustal belt. It changes upwards from predominantly layered felsic metasediments to ferromagnesian mica schists. The supracrustal belt is regarded as a thin fragment from a thicker, more extensive volcanosedimentary pile. The early Archaean gneisses adjacent to the supracrustal belt consist of early multiphase tonalites which were first intruded by mafic dioritic dykes and then by granitic sheets. The granitic sheets were originaIly horizontal to gently inciined and form up to 40 per cent of the gneiss complex. Interdigitation of supracrustal rocks and gneisses in the Isukasia area is due to both the style of intrusion ofthe gneisses and to tectonic intercalation. Archaean basic dykes that cut the supracrustal belt and adjacent gneisses are ofseveral generations. Within and south of the supracrustal belt they are generally strongly deformed and have been recrystallised under amphibolite facies conditions; but in the north of the area they are generally better preserved. The dykes cut across several generations of structures in the supracrustal belt and the adjacent gneisses.


1986 ◽  
Vol 154 ◽  
pp. 1-80
Author(s):  
A.P Nutman

The c. 3800 Ma Isua supracrustal belt and associated smaller bodies of supracrustal rocks are intruded by >3600 Ma orthogneisses. A coherent stratigraphic sequence is recognised consisting of interlayered metabasic rocks, metasediments derived from volcanic rocks, chemical sediments, and metabasic and ultramafic intrusions. Despite repeated deformation and high-grade metamorphism sedimentary structures are locally preserved. The depositional environment was probably an immersed volcanic region remote from areas of significantly older crust. Conglomeratic structures in a metachert and banded iron formation unit suggest shoaling and shallow water conditions. Felsic sediments locally preserve evidence of deposition from turbidite flows. The Isua supracrustal rocks are regarded as thin fragments of a thicker, more extensive sequence. The orthogneisses that intrude the supracrustal rocks consist of 3750-3700 Ma multiphase tonalites (the grey gneisses) which were first intruded by the basic Inaluk dykes, then by abundant shallow-dipping swarms of c. 3600 Ma granite sheets (the white gneisses) and finally by c. 3400 Ma pegmatitic gneiss sheets. These early Archaean rocks were metamorphosed under amphibolite facies conditions and repeatedly deformed prior to intrusion of the Tarssartôq basic dykes in the mid Archaean. In the late Archaean (3100-2500 Ma) there was polyphase metamorphism up to amphibolite facies grade and two or more stages of deformation and local intrusion of granitic gneiss sheets and pegmatites. However, despite general strong deformation there is a large augen of low deformation preserved within the arc of the Isua supracrustal belt. During the Proterozoic there was intrusion of basic dykes, major faulting with associated recrystallisation under uppermost greenschist to lowermost amphibolite facies conditions, followed by heating and intrusion of acid dykes at c. 1600 Ma. No profitable mineralisations have been located.


Author(s):  
Adam A. Garde ◽  
Julie A. Hollis

NOTE: This Map Description was published in a former series of GEUS Bulletin. Please use the original series name when citing this series, for example: Garde, A. A., & Hollis, J. A. (2010). Descriptive text to the Geological map of Greenland, 1:100 000, Kangaatisiaq 68 V.1 Syd and Ikamiut 68 V.1 Nord. Geological Survey of Denmark and Greenland Map Series 5, 1-41. https://doi.org/10.34194/geusm.v5.4580 _______________ The two adjacent Kangaatsiaq and Ikamiut map sheets cover a coastal area of central West Greenland in the northern part of the Palaeoproterozoic Nagssugtoqidian orogen. The map area is part of the Aasiaat domain, which almost entirely consists of Neoarchaean orthogneisses with intercalated metamorphosed volcano-sedimentary belts. The Aasiaat domain was partially reworked during the Nagssugtoqidian orogeny, but Palaeoproterozoic components are restricted to mafic dykes, the ≤1904 ± 8 Ma (2σ) Naternaq supracrustal belt east of Kangaatsiaq, and remnants of a c. 1850 Ma Palaeoproterozoic ocean-floor – arc-trench association on small islands north-east of Aasiaat. Undated, lithologically similar rocks occur on Hunde Ejlande north of Aasiaat. The Archaean volcano-sedimentary belts are up to 2 km thick and comprise fine-grained mafic and minor, intermediate amphibolite of ex- and intrusive origin, gabbro, leucogabbro-anorthosite, and biotite-garnet schist with common sillimanite pseudomorphs after andalusite. The c. 2.8 Ga Archaean orthogneiss is largely tonalitic besides minor dioritic and granodioritic components, and preserves intrusive relationships with some of the supracrustal belts. Sheet-like bodies of late-kinematic crustal melt granites are up to about 10 km in length and 2 km thick. One of these has yielded a zircon Pb-Pb age of 2748 ± 19 Ma (2σ). Up to kilometre-thick units of quartzo-feldspathic and locally garnet-bearing paragneisses also occur, some of which are younger than the orthogneisses. The Aasiaat domain has undergone two Archaean orogenic episodes, separated by injection of mafic dykes and sedimentation at its margins. Archaean deformation resulted in kilometre-scale, tight to isoclinals folds refolded by upright to overturned folds, and its southern part reached granulite facies P–T conditions with widespread partial melting. The Aasiaat domain also underwent heating during the Nagssugtoqidian orogeny, but only its northern part was tectonically reworked, resulting in an intense E–W- to NNE–SSW-trending structural grain associated with subhorizontal extension lineation. The Palaeoproterozoic Naternaq supracrustal belt in the eastern part of the Kangaatsiaq map area has a complex synformal structure and displays a prominent structural discordance against the underlying Archaean rocks; the belt also contains a second phase of SE-plunging, overturned folds. The Palaeoproterozoic ocean-floor – arc trench association on islands north-east of Aasiaat comprises pillow lava, manganiferous chlorite schist, chert, banded iron formation, graded aluminous schist, and siliceous sandstone, and points to the existence of a palaeosuture in this area. A Palaeogene picritic sill complex and a small exposure of sandstone form the c. 15 km long island group of Kitsissunnguit / Gronne Ejland in the north-eastern Ikamiut map area. Two contem-poraneous, N–S-trending mafic dykes were emplaced into the basement rocks south-west of the islands. One of these was hydraulically chilled and fractured during its emplacement, presumably due to contact with meteoric or sea water. Widespread hydrothermal alteration occurs along faults and joints in the basement rocks in the northern archipelago. The alteration may have been caused by circulation of magmatically heated meteoric or sea water during the development of the Cretaceous–Paleocene basalt province in West Greenland. No deposits of economic interest have been found in the Archaean rocks within the map area. A massive sulphide deposit in the Naternaq supracrustal belt was discovered and explored in the 1960s by Kryolitselskabet Oresund A/S, and a VHMS-style copper-gold-zinc mineralisation was reported in 2004 from Kitsissuarsuit / Hunde Ejlande by a local inhabitant. The potential for ornamental rocks is largely unexplored.


Sign in / Sign up

Export Citation Format

Share Document