copper sulfides
Recently Published Documents


TOTAL DOCUMENTS

221
(FIVE YEARS 54)

H-INDEX

26
(FIVE YEARS 4)

2022 ◽  
Vol 23 ◽  
pp. 100675
Author(s):  
Y. Shi ◽  
B. Yang ◽  
X. Guo ◽  
X. Wu ◽  
H. Pang

RSC Advances ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 631-639
Author(s):  
Constantinos Varotsis ◽  
Charalampos Tselios ◽  
Konstantinos A. Yiannakkos ◽  
Charalampos Andreou ◽  
Marios Papageorgiou ◽  
...  

Raman and FTIR microspectroscopies, laser induced breakdown spectroscopy (LIBS) and DP-LIBS have been applied towards our understanding of the characterization of the structure and structure–function relationship in copper-sulfide minerals.


2022 ◽  
Vol 175 ◽  
pp. 107286
Author(s):  
Leiming Wang ◽  
Shenghua Yin ◽  
Bona Deng ◽  
Aixiang Wu

2021 ◽  
Vol 116 (8) ◽  
pp. 1981-2009
Author(s):  
Joel B.H. Andersson ◽  
Tobias E. Bauer ◽  
Olof Martinsson

Abstract To guide future exploration, this predominantly field based study has investigated the structural evolution of the central Kiruna area, the type locality for iron oxide-apatite deposits that stands for a significant amount of the European iron ore production. Using a combination of geologic mapping focusing on structures and stratigraphy, petrography with focus on microstructures, X-ray computed tomography imaging of sulfide-structure relationships, and structural 2D-forward modeling, a structural framework is provided including spatial-temporal relationships between iron oxide-apatite emplacement, subeconomic Fe and Cu sulfide mineralization, and deformation. These relationships are important to constrain as a guidance for exploration in iron oxide-apatite and iron oxide copper-gold prospective terrains and may help to understand the genesis of these deposit types. Results suggest that the iron oxide-apatite deposits were emplaced in an intracontinental back-arc basin, and they formed precrustal shortening under shallow crustal conditions. Subsequent east-west crustal shortening under greenschist facies metamorphism inverted the basin along steep to moderately steep E-dipping structures, often subparallel with bedding and lithological contacts, with reverse, oblique to dip-slip, east-block-up sense of shears. Fe and Cu sulfides associated with Fe oxides are hosted by structures formed during the basin inversion and are spatially related to the iron oxide-apatite deposits but formed in fundamentally different structural settings and are separated in time. The inverted basin was gently refolded and later affected by hydraulic fracturing, which represent the last recorded deformation-hydrothermal events affecting the crustal architecture of central Kiruna.


2021 ◽  
Vol 79 (4) ◽  
Author(s):  
S.M. Sakhabayeva ◽  
M.Kh. Balapanov ◽  
K.A. Kuterbekov ◽  
Sh.G. Giniyatova ◽  
M.M. Kubenova ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7928
Author(s):  
Julia Maria Mazurków ◽  
Anna Kusior ◽  
Marta Radecka

The diversity of materials proposed for non-enzymatic glucose detection and the lack of standardized protocols for assessing sensor performance have caused considerable confusion in the field. Therefore, methods for pre-evaluation of working electrodes, which will enable their conscious design, are currently intensively sought. Our approach involved comprehensive morphologic and structural characterization of copper sulfides as well as drop-casted suspensions based on three different polymers—cationic chitosan, anionic Nafion, and nonionic polyvinylpyrrolidone (PVP). For this purpose, scanning electron microscopy (SEM), X-ray diffraction (XRD), and Raman spectroscopy were applied. Subsequently, comparative studies of electrochemical properties of bare glassy carbon electrode (GCE), polymer- and copper sulfides/polymer-modified GCEs were performed using electrochemical impedance spectroscopy (EIS) and voltammetry. The results from EIS provided an explanation for the enhanced analytical performance of Cu-PVP/GCE over chitosan- and Nafion-based electrodes. Moreover, it was found that the pH of the electrolyte significantly affects the electrocatalytic behavior of copper sulfides, indicating the importance of OHads in the detection mechanism. Additionally, diffusion was denoted as a limiting step in the irreversible electrooxidation process that occurs in the proposed system.


Minerals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1299
Author(s):  
Yan Jia ◽  
Heyun Sun ◽  
Qiaoyi Tan ◽  
Jingyuan Xu ◽  
Xinliang Feng ◽  
...  

Sulfuric acid solution containing ferric iron is the extractant for industrial heap bioleaching of copper sulfides. To start a heap bioleaching plant, sulfuric acid is usually added to the irrigation solution to maintain adequate acidity (pH 1.0–2.0) for copper dissolution. An industrial practice of heap bioleaching of secondary copper sulfide ore that began with only water irrigation without the addition of sulfuric acid was successfully implemented and introduced in this manuscript. The mineral composition and their behavior related to the production and consumption of sulfuric acid during the bioleaching in heaps was analyzed. This indicated the possibility of self-generating of sulfuric acid in heaps without exogenous addition. After proving by batches of laboratory tests, industrial measures were implemented to promote the sulfide mineral oxidation in heaps throughout the acidifying stages, from a pH of 7.0 to 1.0, thus sulfuric acid and iron was produced especially by pyrite oxidation. After acidifying of the heaps, adapted microbial consortium was inoculated and established in a leaching system. The launch of the bioleaching heap and finally the production expansion were realized without the addition of sulfuric acid, showing great efficiency under low operation costs.


Minerals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1078
Author(s):  
Wentao Hu ◽  
Kai Tian ◽  
Zhengyang Zhang ◽  
Jiuchuan Guo ◽  
Xinwei Liu ◽  
...  

The mineral composition of copper–cobalt ores is more complex than that of copper sulfides, and it is also difficult to discard tailing efficiently in primary flotation for the fine-grained disseminated of ore. In this work, a mineral liberation analyzer (MLA) was employed to study the characteristics of minerals. As a significant mineralogical characteristic, the liberation degree of useful mineral aggregates was determined after grinding, and a correlation was established between the ore grinding size and mineralogical characteristics. The results showed that the adopted ore occurred in sulfide form. However, the particle size of the mineral’s monomer was fine grained, whereas its aggregate was coarse. The sulfide mineral aggregate obtained after primary grinding was selected as the recovery object, and its mineralogical characteristics, such as liberation degree and particle size, were investigated to promote total recovery in primary flotation. The copper–cobalt sulfide concentration was obtained at the following optimal conditions: the grinding size of −0.074 mm (65%), the aggregate’s liberation degree of 67%, a collector dosage of 50 g·t−1, a collector combination of 35% aerofloat + 65% butyl xanthate, a pH of 8.5, and 2# oil (a terpineol type foaming agent) dosage of 60 g·t−1. The recovered rough Cu and Co concentrates were 89.45% and 88.03%, respectively. Moreover, the grades of Cu and Co were 13.4% and 4.81%, respectively, with 85.07% of the ore weight discarded as tailing. The consideration of sulfide aggregates instead of singeral minerals mineralogy characters in primary grinding and primary flotation provides an effective theoretical guide for the sorting of sulfide minerals and reduction in the power consumption of grinding.


Inorganics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 70
Author(s):  
Graeme Hogarth ◽  
Damian C. Onwudiwe

Copper dithiocarbamate complexes have been known for ca. 120 years and find relevance in biology and medicine, especially as anticancer agents and applications in materials science as a single-source precursor (SSPs) to nanoscale copper sulfides. Dithiocarbamates support Cu(I), Cu(II) and Cu(III) and show a rich and diverse coordination chemistry. Homoleptic [Cu(S2CNR2)2] are most common, being known for hundreds of substituents. All contain a Cu(II) centre, being either monomeric (distorted square planar) or dimeric (distorted trigonal bipyramidal) in the solid state, the latter being held together by intermolecular C···S interactions. Their d9 electronic configuration renders them paramagnetic and thus readily detected by electron paramagnetic resonance (EPR) spectroscopy. Reaction with a range of oxidants affords d8 Cu(III) complexes, [Cu(S2CNR2)2][X], in which copper remains in a square-planar geometry, but Cu–S bonds shorten by ca. 0.1 Å. These show a wide range of different structural motifs in the solid-state, varying with changes in anion and dithiocarbamate substituents. Cu(I) complexes, [Cu(S2CNR2)2]−, are (briefly) accessible in an electrochemical cell, and the only stable example is recently reported [Cu(S2CNH2)2][NH4]·H2O. Others readily lose a dithiocarbamate and the d10 centres can either be trapped with other coordinating ligands, especially phosphines, or form clusters with tetrahedral [Cu(μ3-S2CNR2)]4 being most common. Over the past decade, a wide range of Cu(I) dithiocarbamate clusters have been prepared and structurally characterised with nuclearities of 3–28, especially exciting being those with interstitial hydride and/or acetylide co-ligands. A range of mixed-valence Cu(I)–Cu(II) and Cu(II)–Cu(III) complexes are known, many of which show novel physical properties, and one Cu(I)–Cu(II)–Cu(III) species has been reported. Copper dithiocarbamates have been widely used as SSPs to nanoscale copper sulfides, allowing control over the phase, particle size and morphology of nanomaterials, and thus giving access to materials with tuneable physical properties. The identification of copper in a range of neurological diseases and the use of disulfiram as a drug for over 50 years makes understanding of the biological formation and action of [Cu(S2CNEt2)2] especially important. Furthermore, the finding that it and related Cu(II) dithiocarbamates are active anticancer agents has pushed them to the fore in studies of metal-based biomedicines.


Sign in / Sign up

Export Citation Format

Share Document