scholarly journals Boundary value problems for the mildly non-linear ordinary differential equation of the fourth order

1974 ◽  
Vol 19 (4) ◽  
pp. 216-231
Author(s):  
Helena Růžičková
2017 ◽  
Vol 24 (2) ◽  
pp. 265-275
Author(s):  
Sulkhan Mukhigulashvili ◽  
Mariam Manjikashvili

AbstractIn this article we consider the two-point boundary value problem\left\{\begin{aligned} &\displaystyle u^{(4)}(t)=p(t)u(t)+h(t)\quad\text{for }% a\leq t\leq b,\\ &\displaystyle u^{(i)}(a)=c_{1i},\quad u^{(i)}(b)=c_{2i}\quad(i=0,1),\end{% aligned}\right.where {c_{1i},c_{2i}\in R}, {h,p\in L([a,b];R)}. Here we study the question of dimension of the space of nonzero solutions and oscillatory behaviors of nonzero solutions on the interval {[a,b]} for the corresponding homogeneous problem, and establish efficient sufficient conditions of solvability for the nonhomogeneous problem.


2004 ◽  
Vol 02 (01) ◽  
pp. 71-85 ◽  
Author(s):  
YUJI LIU ◽  
WEIGAO GE

In this paper, we study four-point boundary value problems for a fourth-order ordinary differential equation of the form [Formula: see text] with one of the following boundary conditions: [Formula: see text] or [Formula: see text] Growth conditions on f which guarantee existence of at least three positive solutions for the problems (E)–(B1) and (E)–(B2) are imposed.


Author(s):  
K. K. Tam

AbstractA model for thermal ignition by intense light is studied. The governing non-linear parabolic equation is linearized in a two-step manner with the aid of a non-linear ordinary differential equation which captures the salient features of the non-linear parabolic equation. The critical parameters are computed from the steady-state solution of the ordinary differential equation, which can be obtained without actually solving the equation. Comparison with available data shows that the present method yields good results.


2019 ◽  
Vol 21 (85) ◽  
pp. 1-10
Author(s):  
Rasha H.Ibraheem

In this paper, the collocation method is considered to solve the nonhomogeneous  for fourth order fuzzy boundary value problems, In which the fuzziness appeared together in the boundary conditions and in the nonhomogeneous term of the differential equation. The method of solution depends on transforming the fuzzy problem to equivalent crisp problems using the concept of α-level sets.


Sign in / Sign up

Export Citation Format

Share Document