Pressure Transient Analysis Methods for Bounded Naturally Fractured Reservoirs

1985 ◽  
Vol 25 (03) ◽  
pp. 451-464 ◽  
Author(s):  
Chih-Cheng Chen ◽  
Kelsen Serra ◽  
Albert C. Reynolds ◽  
Rajagopal Raghavan

Abstract New methods for analyzing drawdown and buildup pressure data obtained at a well located in an infinite, pressure data obtained at a well located in an infinite, naturally fractured reservoir were presented recently. In this work, the analysis of both drawdown and buildup data in a bounded, naturally fractured reservoir is considered. For the bounded case, we show that five possible flow regimes may be exhibited by drawdown data. We delineate the conditions under which each of these five flow regimes exists and the information that can be obtained from each possible combination of flow regimes. Conditions under which semilog methods can be used to analyze buildup data are discussed for the bounded fractured reservoir case. New Matthews-Brons-Hazebroek (MBH) functions for computing the average reservoir pressure from buildup data are presented. pressure from buildup data are presented. Introduction This work considers the analysis of pressure data obtained at a well located at the center of a cylindrical, bounded, naturally fractured reservoir of uniform thickness. As is typical, a naturally fractured reservoir indicates a reservoir system in which the conductive properties of the rock are mainly due to the fracture system, and the rock matrix provides most of the storage capacity of the system. Several models of naturally fractured reservoirs have been presented m the literature. Warren and Root and Odeh presented m the literature. Warren and Root and Odeh assume "pseudosteady-state flow" in the matrix, whereas Kazemi, deSwaan, Najurieta, and Kucuk and Sawyers assume unsteady-state flow. The model used in this study is identical to the one considered in Refs. 4, 5, 7, and 8; however, these works considered only infinite-acting reservoirs. To our knowledge, the behavior of wells in bounded, naturally fractured reservoirs with unsteady-state flow in the matrix system has not been examined until now. This work considers the analysis of constant-rate production and buildup pressure data in a bounded, naturally production and buildup pressure data in a bounded, naturally fractured reservoir. For a bounded reservoir, we show that there are five distinct, useful flow regimes that may be exhibited by drawdown data. Flow Regimes 1, 2, and 11 are identical to the flow regimes identified in Refs. 7 and 8. During each of these three flow regimes, a semilog plot of the dimensionless wellbore pressure drop vs. plot of the dimensionless wellbore pressure drop vs. dimensionless time exhibits a straight line. The information that can be obtained from the various possible combinations of Flow Regimes 1 through 3 is discussed in Refs. 7 and 8. Flow Regime 5 corresponds to pseudo-steady-state flow. Flow Regime 4 denotes a flow pseudo-steady-state flow. Flow Regime 4 denotes a flow period during which a Cartesian graph of the dimensionless period during which a Cartesian graph of the dimensionless wellbore pressure drop vs. the square root of dimensionless time will be a straight line. In this work, we first establish the conditions under which each of the flow regimes exists. In particular, we show that Flow Regime 3 does not exist unless either the drainage radius or the dimensionless fracture transfer coefficient is large. Second, we show that useful information can be obtained from drawdown pressure data that reflect Flow Regime 4. Third, we delineate conditions that ensure that the methods of Refs. 7, and 8 can be used to analyze buildup data. Finally, we present new MBH functions for computing the average reservoir pressure in a naturally fractured reservoir. Mathematical Model We consider laminar flow of a slightly compressible, single-phase fluid of constant viscosity in an isotropic, cylindrical, naturally fractured reservoir of uniform thickness. Gravitational forces are negligible. The top, bottom, and outer reservoir boundaries are closed. A well located at the center of the cylinder is produced at a constant rate and then shut in to obtain buildup data. Initially, the pressure is uniform throughout the reservoir. We assume that all production is by way of the fracture system and that we have one-dimensional (ID), unsteady-state flow in the matrix. The matrix structure consists of "rectangular slabs"; that is, the matrix is divided by a set of parallel horizontal fractures. A schematic of the reservoir geometry is shown in Fig. 1. We consider an infinitesimally thin skin and neglect wellbore storage effects. The properties of both the matrix and fracture systems are assumed to be constant. Thus, our current model is identical to the one considered in Ref. 7 except that here the reservoir is assumed to be bounded. Because of symmetry, the mathematical problem can be formulated by considering only the repetitive element of Fig. 1. SPEJ p. 451

1969 ◽  
Vol 9 (04) ◽  
pp. 451-462 ◽  
Author(s):  
H. Kazemi

Abstract An ideal theoretical model of a naturally fractured reservoir with a uniform fracture distribution, motivated by an earlier model by Warren and Root, has been developed. This model consists of a finite circular reservoir with a centrally located well and two distinct porous regions, referred to as matrix and fracture, respectively. The matrix has high storage, but low flow capacity; the fracture has low storage, but high flow capacity. The flow in the entire reservoir is unsteady state. The results of this study are compared with the results of the earlier models, and it has been concluded that major conclusions of Warren and Root are quite substantial. Furthermore, an attempt has been made to study critically other analytical methods reported in the literature. In general, it may be concluded that the analysis of a naturally fractured reservoir from pressure transient data relies considerably on the degree and the type of heterogeneity of the system; the testing procedure and test facilities are sometimes as important. Nevertheless, under favorable conditions, one should be able to calculate in-situ characteristics of the matrix-fracture system, such as pore-volume ratio, over-all capacity of the formation, total storage capacity of the porous matrix, and some measure of matrix permeability. Introduction The analysis of flow and buildup tests for obtaining in-situ characteristics of oil and gas reservoirs has received considerable attention in the past decade. Most of the available techniques result in reliable conclusions in macroscopically homogeneous reservoirs or in the homogeneous reservoirs with only certain types of induced and/or inherent heterogeneity (such as wellbore damage, etc.).


2015 ◽  
Vol 18 (02) ◽  
pp. 187-204 ◽  
Author(s):  
Fikri Kuchuk ◽  
Denis Biryukov

Summary Fractures are common features in many well-known reservoirs. Naturally fractured reservoirs include fractured igneous, metamorphic, and sedimentary rocks (matrix). Faults in many naturally fractured carbonate reservoirs often have high-permeability zones, and are connected to numerous fractures that have varying conductivities. Furthermore, in many naturally fractured reservoirs, faults and fractures can be discrete (rather than connected-network dual-porosity systems). In this paper, we investigate the pressure-transient behavior of continuously and discretely naturally fractured reservoirs with semianalytical solutions. These fractured reservoirs can contain periodically or arbitrarily distributed finite- and/or infinite-conductivity fractures with different lengths and orientations. Unlike the single-derivative shape of the Warren and Root (1963) model, fractured reservoirs exhibit diverse pressure behaviors as well as more than 10 flow regimes. There are seven important factors that dominate the pressure-transient test as well as flow-regime behaviors of fractured reservoirs: (1) fractures intersect the wellbore parallel to its axis, with a dipping angle of 90° (vertical fractures), including hydraulic fractures; (2) fractures intersect the wellbore with dipping angles from 0° to less than 90°; (3) fractures are in the vicinity of the wellbore; (4) fractures have extremely high or low fracture and fault conductivities; (5) fractures have various sizes and distributions; (6) fractures have high and low matrix block permeabilities; and (7) fractures are damaged (skin zone) as a result of drilling and completion operations and fluids. All flow regimes associated with these factors are shown for a number of continuously and discretely fractured reservoirs with different well and fracture configurations. For a few cases, these flow regimes were compared with those from the field data. We performed history matching of the pressure-transient data generated from our discretely and continuously fractured reservoir models with the Warren and Root (1963) dual-porosity-type models, and it is shown that they yield incorrect reservoir parameters.


1965 ◽  
Vol 5 (01) ◽  
pp. 60-66 ◽  
Author(s):  
A.S. Odeh

Abstract A simplified model was employed to develop mathematically equations that describe the unsteady-state behavior of naturally fractured reservoirs. The analysis resulted in an equation of flow of radial symmetry whose solution, for the infinite case, is identical in form and function to that describing the unsteady-state behavior of homogeneous reservoirs. Accepting the assumed model, for all practical purposes one cannot distinguish between fractured and homogeneous reservoirs from pressure build-up and/or drawdown plots. Introduction The bulk of reservoir engineering research and techniques has been directed toward homogeneous reservoirs, whose physical characteristics, such as porosity and permeability, are considered, on the average, to be constant. However, many prolific reservoirs, especially in the Middle East, are naturally fractured. These reservoirs consist of two distinct elements, namely fractures and matrix, each of which contains its characteristic porosity and permeability. Because of this, the extension of conventional methods of reservoir engineering analysis to fractured reservoirs without mathematical justification could lead to results of uncertain value. The early reported work on artificially and naturally fractured reservoirs consists mainly of papers by Pollard, Freeman and Natanson, and Samara. The most familiar method is that of Pollard. A more recent paper by Warren and Root showed how the Pollard method could lead to erroneous results. Warren and Root analyzed a plausible two-dimensional model of fractured reservoirs. They concluded that a Horner-type pressure build-up plot of a well producing from a factured reservoir may be characterized by two parallel linear segments. These segments form the early and the late portions of the build-up plot and are connected by a transitional curve. In our analysis of pressure build-up and drawdown data obtained on several wells from various fractured reservoirs, two parallel straight lines were not observed. In fact, the build-up and drawdown plots were similar in shape to those obtained on homogeneous reservoirs. Fractured reservoirs, due to their complexity, could be represented by various mathematical models, none of which may be completely descriptive and satisfactory for all systems. This is so because the fractures and matrix blocks can be diverse in pattern, size, and geometry not only between one reservoir and another but also within a single reservoir. Therefore, one mathematical model may lead to a satisfactory solution in one case and fail in another. To understand the behavior of the pressure build-up and drawdown data that were studied, and to explain the shape of the resulting plots, a fractured reservoir model was employed and analyzed mathematically. The model is based on the following assumptions:1. The matrix blocks act like sources which feed the fractures with fluid;2. The net fluid movement toward the wellbore obtains only in the fractures; and3. The fractures' flow capacity and the degree of fracturing of the reservoir are uniform. By the degree of fracturing is meant the fractures' bulk volume per unit reservoir bulk volume. Assumption 3 does not stipulate that either the fractures or the matrix blocks should possess certain size, uniformity, geometric pattern, spacing, or direction. Moreover, this assumption of uniform flow capacity and degree of fracturing should be taken in the same general sense as one accepts uniform permeability and porosity assumptions in a homogeneous reservoir when deriving the unsteady-state fluid flow equation. Thus, the assumption may not be unreasonable, especially if one considers the evidence obtained from examining samples of fractured outcrops and reservoirs. Such samples show that the matrix usually consists of numerous blocks, all of which are small compared to the reservoir dimensions and well spacings. Therefore, the model could be described to represent a "homogeneously" fractured reservoir. SPEJ P. 60ˆ


1983 ◽  
Vol 23 (01) ◽  
pp. 42-54 ◽  
Author(s):  
L. Kent Thomas ◽  
Thomas N. Dixon ◽  
Ray G. Pierson

Abstract This paper describes the development of a three-dimensional (3D), three-phase model for simulating the flow of water, oil, and gas in a naturally fractured reservoir. A dual porosity system is used to describe the fluids present in the fractures and matrix blocks. Primary flow present in the fractures and matrix blocks. Primary flow in the reservoir occurs within the fractures with local exchange of fluids between the fracture system and matrix blocks. The matrix/fracture transfer function is based on an extension of the equation developed by Warren and Root and accounts for capillary pressure, gravity, and viscous forces. Both the fracture flow equations and matrix/fracture flow are solved implicitly for pressure, water saturation, gas saturation, and saturation pressure. We present example problems to demonstrate the utility of the model. These include a comparison of our results with previous results: comparisons of individual block matrix/fracture transfers obtained using a detailed 3D grid with results using the fracture model's matrix/fracture transfer function; and 3D field-scale simulations of two- and three-phase flow. The three-phase example illustrates the effect of free gas saturation on oil recovery by waterflooding. Introduction Simulation of naturally fractured reservoirs is a challenging task from both a reservoir description and a numerical standpoint. Flow of fluids through the reservoir primarily is through the high-permeability, low-effective-porosity fractures surrounding individual matrix blocks. The matrix blocks contain the majority of the reservoir PV and act as source or sink terms to the fractures. The rate of recovery of oil and gas from a fractured reservoir is a function of several variables, included size and properties of matrix blocks and pressure and saturation history of the fracture system. Ultimate recovery is influenced by block size, wettability, and pressure and saturation history. Specific mechanisms pressure and saturation history. Specific mechanisms controlling matrix/fracture flow include water/oil imbibition, oil imbibition, gas/oil drainage, and fluid expansion. The study of naturally fractured reservoirs has been the subject of numerous papers over the last four decades. These include laboratory investigations of oil recovery from individual matrix blocks and simulation of single- and multiphase flow in fractured reservoirs. Warren and Root presented an analytical solution for single-phase, unsteady-state flow in a naturally fractured reservoir and introduced the concept of dual porosity. Their work assumed a continuous uniform porosity. Their work assumed a continuous uniform fracture system parallel to each of the principal axes of permeability. Superimposed on this system was a set of permeability. Superimposed on this system was a set of identical rectangular parallelopipeds representing the matrix blocks. Mattax and Kyte presented experimental results on water/oil imbibition in laboratory core samples and defined a dimensionless group that relates recovery to time. This work showed that recovery time is proportional to the square root of matrix permeability divided by porosity and is inversely proportional to the square of porosity and is inversely proportional to the square of the characteristic matrix length. Yamamoto et al. developed a compositional model of a single matrix block. Recovery mechanisms for various-size blocks surrounded by oil or gas were studied. SPEJ P. 42


1986 ◽  
Vol 108 (2) ◽  
pp. 120-130 ◽  
Author(s):  
N. S. Yeh ◽  
M. J. Davison ◽  
R. Raghavan

This paper presents new methods to analyze fractured well responses in heterogeneous reservoirs. We consider wells producing formations that are naturally fractured and use the idealizations proposed by Warren and Root (pseudosteady-state flow in the matrix-system) and by deSwaan-O (unsteady-state flow in the matrix-system) to model the naturally fractured reservoir. Pressure responses are correlated in a manner suitable for direct application of field data. Methods to determine fracture half-length are presented. Two field applications are discussed. The consequences of neglecting the heterogeneous character of the porous medium are also discussed.


1984 ◽  
Vol 24 (06) ◽  
pp. 628-638 ◽  
Author(s):  
C.C. Chen ◽  
N. Yeh ◽  
R. Raghavan ◽  
A.C. Reynolds

Abstract This work examines interference test data in a naturally fractured reservoir. The reservoir model examined here assumes that the reservoir can be represented by a system of horizontal fractures that are separated by the matrix. This model is identical to the deSwaan-Kazemi model. The main contribution of our work is that we combine the parameters of interest in a simple way and present solutions that can be used directly for field application. These solutions can be used to design or analyze interference tests. We also compare the solution for unsteady-state flow in the matrix with the Warren-Root model, which assumes pseudosteady-state fluid flow in the matrix. Introduction This work examines the pressure response at an observation well in a fractured reservoir. Previous works by Kazemi et al. and Streltsova-Adams have examined the pressure response based on the Warren and Root model. In this work, however, we assume unsteady-state fluid transfer from the matrix to the fracture system. We consider the model proposed by deSwaan and Kazemi. This model assumes that the fractured reservoir can be replaced by an equivalent set of horizontal fractures separated by matrix elements (Fig. 1). The results of this study, however, can be applied to other unsteady-state models proposed in the literature. The main contribution of this work is that type curves convenient for analyzing data are presented. We have combined the parameters of interest and correlated results in terms of dimensionless groups that are commonly used in well test analysis. A comprehensive discussion of the pressure behavior at an observation well in a fractured reservoir is presented. Procedures to analyze data by conventional semilog methods also are discussed. New observations on the pressure response at an observation well are presented. For purposes of comparison, we also examined the pressure response in a reservoir that obeys the Warren and Root idealization. Assumptions and Mathematical Model The mathematical model considered here assumes the flow of a slightly compressible (of constant viscosity) fluid in a naturally fractured reservoir. We assume that the matrix-fracture geometry is as shown in Fig. 1. Individually, the fractures and the matrix are assumed to be homogeneous, uniform, and isotropic porous media with distinct properties. Gravitational forces are assumed negligible. The reservoir is assumed to be infinitely large-i.e., the outer boundaries have no effect on the pressure response. The initial condition assumes that the pressure is constant at all points in the reservoir. We assume that the flowing well produces at a constant rate and that the two wells both penetrate the fracture system. In addition, we impose four fundamental assumptions:all production is from the fracture system,flow in the matrix system is one-dimensional-i.e., in the z direction (see Fig. 1),flow in the fracture system is radial, andboth the producing and observation wells are line source wells and wellbore storage and skin effects are neglected. Assumptions 1, 2, and 3 have been used extensively in previous studies of naturally fractured reservoirs. Recent results of Reynolds et al. indicate that these assumptions are valid for the model considered in Fig. 1 if the flow capacity of the matrix system is small relative to the flow capacity of the fracture system (see Ref. 9 for specific details). Assumption 4 is used in virtually all studies of interference testing. (A comprehensive discussion of the influence of wellbore storage and skin effects on interference test data is given in Refs. 10 and 11.) It is important to realize that flee preceding four assumptions (see 2 in particular) imply that the pressure response at the observation well will be equal to the pressure response in the fracture system at the point where the observation well intersects the fractured system. All results given in this study are based on dimensionless variables for purposes of convenience. The dimensionless variables are defined as follows. The dimensionless pressure drop in the reservoir is ...............(1) Here, is the permeability of the fracture system and is the total thickness of the fracture system. If the model of Fig. 1 contains horizontal fractures, then = where is the thickness of each horizontal fracture. The term represents the surface flow rate, is the formation volume factor, is the viscosity of the fluid, and ( ) is the pressure at point at time . The subscript f refers to the fracture. All quantities are expressed in SPE-preferred SI metric units. SPEJ P. 628^


SPE Journal ◽  
2007 ◽  
Vol 12 (03) ◽  
pp. 367-381 ◽  
Author(s):  
Reza Naimi-Tajdar ◽  
Choongyong Han ◽  
Kamy Sepehrnoori ◽  
Todd James Arbogast ◽  
Mark A. Miller

Summary Naturally fractured reservoirs contain a significant amount of the world oil reserves. A number of these reservoirs contain several billion barrels of oil. Accurate and efficient reservoir simulation of naturally fractured reservoirs is one of the most important, challenging, and computationally intensive problems in reservoir engineering. Parallel reservoir simulators developed for naturally fractured reservoirs can effectively address the computational problem. A new accurate parallel simulator for large-scale naturally fractured reservoirs, capable of modeling fluid flow in both rock matrix and fractures, has been developed. The simulator is a parallel, 3D, fully implicit, equation-of-state compositional model that solves very large, sparse linear systems arising from discretization of the governing partial differential equations. A generalized dual-porosity model, the multiple-interacting-continua (MINC), has been implemented in this simulator. The matrix blocks are discretized into subgrids in both horizontal and vertical directions to offer a more accurate transient flow description in matrix blocks. We believe this implementation has led to a unique and powerful reservoir simulator that can be used by small and large oil producers to help them in the design and prediction of complex gas and waterflooding processes on their desktops or a cluster of computers. Some features of this simulator, such as modeling both gas and water processes and the ability of 2D matrix subgridding are not available in any commercial simulator to the best of our knowledge. The code was developed on a cluster of processors, which has proven to be a very efficient and convenient resource for developing parallel programs. The results were successfully verified against analytical solutions and commercial simulators (ECLIPSE and GEM). Excellent results were achieved for a variety of reservoir case studies. Applications of this model for several IOR processes (including gas and water injection) are demonstrated. Results from using the simulator on a cluster of processors are also presented. Excellent speedup ratios were obtained. Introduction The dual-porosity model is one of the most widely used conceptual models for simulating naturally fractured reservoirs. In the dual-porosity model, two types of porosity are present in a rock volume: fracture and matrix. Matrix blocks are surrounded by fractures and the system is visualized as a set of stacked volumes, representing matrix blocks separated by fractures (Fig. 1). There is no communication between matrix blocks in this model, and the fracture network is continuous. Matrix blocks do communicate with the fractures that surround them. A mass balance for each of the media yields two continuity equations that are connected by matrix-fracture transfer functions which characterize fluid flow between matrix blocks and fractures. The performance of dual-porosity simulators is largely determined by the accuracy of this transfer function. The dual-porosity continuum approach was first proposed by Barenblatt et al. (1960) for a single-phase system. Later, Warren and Root (1963) used this approach to develop a pressure-transient analysis method for naturally fractured reservoirs. Kazemi et al. (1976) extended the Warren and Root method to multiphase flow using a 2D, two-phase, black-oil formulation. The two equations were then linked by means of a matrix-fracture transfer function. Since the publication of Kazemi et al. (1976), the dual-porosity approach has been widely used in the industry to develop field-scale reservoir simulation models for naturally fractured reservoir performance (Thomas et al. 1983; Gilman and Kazemi 1983; Dean and Lo 1988; Beckner et al. 1988; Rossen and Shen 1989). In simulating a fractured reservoir, we are faced with the fact that matrix blocks may contain well over 90% of the total oil reserve. The primary problem of oil recovery from a fractured reservoir is essentially that of extracting oil from these matrix blocks. Therefore it is crucial to understand the mechanisms that take place in matrix blocks and to simulate these processes within their container as accurately as possible. Discretizing the matrix blocks into subgrids or subdomains is a very good solution to accurately take into account transient and spatially nonlinear flow behavior in the matrix blocks. The resulting finite-difference equations are solved along with the fracture equations to calculate matrix-fracture transfer flow. The way that matrix blocks are discretized varies in the proposed models, but the objective is to accurately model pressure and saturation gradients in the matrix blocks (Saidi 1975; Gilman and Kazemi 1983; Gilman 1986; Pruess and Narasimhan 1985; Wu and Pruess 1988; Chen et al. 1987; Douglas et al. 1989; Beckner et al. 1991; Aldejain 1999).


2004 ◽  
Vol 7 (4) ◽  
pp. 303-316 ◽  
Author(s):  
E. Luna ◽  
A. Medina ◽  
C. Perez-Rosales ◽  
C. Trevino

Sign in / Sign up

Export Citation Format

Share Document