observation well
Recently Published Documents


TOTAL DOCUMENTS

152
(FIVE YEARS 30)

H-INDEX

12
(FIVE YEARS 1)

2022 ◽  
Author(s):  
Jin Tang ◽  
Ding Zhu

Abstract In multistage hydraulic fracturing treatments, the combination of extreme large-scale pumping (high rate and volume) and the high heterogeneity of the formation (because of large contact area) normally results in complex fracture growth that cannot be simply modeled with conventional fracture models. Lack of understanding of the fracturing mechanism makes it difficult to design and optimize hydraulic fracturing treatments. Many monitoring, testing and diagnosis technologies have been applied in the field to describe hydraulic fracture development. Strain rate measured by distributed acoustic sensor (DAS) is one of the tools for fracture monitoring in complex completion scenarios. DAS measures far-field strain rate that can be of assistance for fracture characterization, cross-well fracture interference identification, and well stimulation efficiency evaluation. Many field applications have shown DAS responses on observation wells or surrounding producers when a well in the vicinity is fractured. Modeling and interpreting DAS strain rate responses can help quantitatively map fracture propagation. In this work, a methodology is developed to generate the simulated strain-rate responds to assumed fracture systems. The physical domain contains a treated well that the generate strain variation in the domain because of fracturing, and an observation well that has fiber-optic sensor installed along it to measure the strain rate responses to the fracture propagation. Instead of using a complex fracture model to forward simulate fracture propagation, this work starts from a simple 2D fracture propagation model to provide hypothetical fracture geometries in a relatively reasonable and acceptable range for both single fracture case and multiple fracture case. Displacement discontinuity method (DDM) is formulated to simulate rock deformation and strain rate responds on fiber-optic sensors. At each time step, fracture propagation is first allowed, then stress, displacement and strain field are estimated as the fracture approaches to the observation well. Afterward, the strain rate is calculated as fracture growth to generate patterns as fracture approaching. Extended simulation is conducted to monitor fracture propagation and strain rate responses. The patterns of strain rate responses can be used to recognize fracture development. Examples of strain rate responses for different fracturing conditions are presented in this paper. The relationship of injection rate distribution and strain rate responses is investigated to show the potential of using DAS measurements to diagnose multistage hydraulic fracturing treatments.


Water ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 131
Author(s):  
Zohreh Safdari ◽  
Hossein Nahavandchi ◽  
Gholamreza Joodaki

Iran is experiencing significant water challenges that have now turned water security into a national priority. By estimating secular trend groundwater storage in Iran between 2002 and 2017, we see that there is an intensive negative trend, even −4400 Mm3 in some areas. These estimations show shifting in the climate and extra extraction from aquifers for agricultural use in some areas in Iran. The secular trend of groundwater storage changes across the whole of Iran inferred from observation well data is −20.08 GT/yr. The secular trends of GWS changes based on observation well data are: −11.55 GT/yr for the Central Plateau basin, −3.60 GT/yr for the Caspian Sea basin, −3.0 GT/yr for the Persian Gulf and Oman Sea basin, −0.53 GT/yr for the Urmieh Lake basin, −0.57 GT/yr for the Eastern Boundary basin, and −0.83 GT/yr for the Gharaghom basin. The most depleted sub-basin (Kavir Markazi) has secular trends of GWS changes of −4.503 GT/yr. This study suggests that groundwater depletion is the largest single contributor to the observed negative trend of groundwater storage changes in Iran, the majority of which occurred after the drought in 2007. The groundwater loss that has been accrued during the study period is particularly alarming for Iran, which is already facing severe water scarcity.


Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3491
Author(s):  
Yung-Chia Chiu ◽  
Chun-Hung Chen ◽  
Yun-Ta Cheng ◽  
Wenfu Chen

The hydraulic head is the most important parameter for the study of groundwater. However, a head measured from observation wells containing groundwater of variable density should be corrected to a reference density (e.g., a freshwater head). Some previous case studies have used unknown density hydraulic heads for calibrating flow models. Errors arising from the use of observed hydraulic head data of unknown density are, therefore, likely one of the most overlooked issues in flow simulations of seawater intrusion. Here, we present a case study that uses the freshwater head, instead of the observed hydraulic head, to analyze the flow paths of saline groundwater in the coastal region of the Pingtung Plain, Taiwan. Out of a total of 134 observation wells within the Pingtung Plain, 19 wells have been determined to be saline, with Electric Conductivity (EC) values higher than 1500 μS/cm during 2012. The misuse of observed hydraulic heads causes misinterpretation of the flow direction of saline groundwater. For such saline aquifers, the determination of a freshwater head requires density information obtained from an observation well. Instead of the purging and sampling method, we recommend EC logging using a month interval. Our research indicates that EC values within an observation well within saline aquifers vary not only vertically but also by season.


2021 ◽  
Vol 35 (1) ◽  
pp. 71-82
Author(s):  
Nikolay Stoyanov

An identification method for determining the aquifer’s mass transport parameters is proposed, based on data from field tracer tests with a pulse or a continuous source and an arbitrary position of the observation well in respect to the tracer entry point. The method is also applicable in the presence of a representative set of data on changes in the concentration of pollutants at different points in the aquifer around a short-term (instantaneous) or a continuous surface or underground source. The identification procedure is based on the automated comparison of the observations data with a series of theoretical curves by varying the required parameters in order to achieve maximum compliance. The tracer transport is represented by analytical solutions of the partial differential equation for mass transfer in a homogeneous and isotropic two-dimensional porous media. The developed computer programs include numerical optimization using the Levenberg-Marquardt algorithm. Results from tests performed in order to assess reliability and errors of detection and identification are presented. Using the programs, the mass transport parameters: active porosity n0, effective (sorption) porosity nS, longitudinal dispersivity αL, transverse dispersivity αT and rate constant γ can be determined.


Author(s):  
Leuconoe Grazia Sisti ◽  
Anteo Di Napoli ◽  
Alessio Petrelli ◽  
Alessandra Rossi ◽  
Alessandra Diodati ◽  
...  

From the beginning of the COVID-19 pandemic, attention was raised to protect vulnerable populations, including migrants and refugees (M&R), with the claim to leave no one behind in the pandemic response. In particular, concern was expressed in M&R’s reception centres since several COVID-19 outbreaks had been observed in Europe. Our study aimed to evaluate the impact of COVID-19 in the Italian reception system in the first pandemic wave in terms of incidence and health outcomes. A national survey focusing on the lockdown period of early 2020 was performed among reception centre managers. The survey achieved reaching around 70% of reception facilities and hosts. A national cumulative incidence of 400 positive cases per 100,000 and a north–south geographical gradient were observed. Sixty-eight facilities out of the 5038 participating in the survey reported confirmed cases and few COVID-19 clusters were detected especially in accommodations with the highest facility saturation index. Positive migrants were hospitalised in 25.9% of cases and no COVID-19 related deaths were observed. The study highlighted a cumulative incidence of cases and a geographical distribution similar to that of the general resident population, showing a global COVID-19 resilience in the Italian reception system in the period of observation, well beyond the expectations.


SPE Journal ◽  
2021 ◽  
pp. 1-13
Author(s):  
Smith Edward Leggett ◽  
Ding Zhu ◽  
Alfred Daniel Hill

Summary Fiber-optic cables cemented outside of the casing of an unconventional well measure crosswell strain changes during fracturing of neighboring wells with low-frequency distributed acoustic sensing (LF-DAS). As a hydraulic fracture intersects an observation well instrumented with fiber-optic cables, the fracture fluid injected at ambient temperatures can cool a section of the sensing fiber. Often, LF-DAS and distributed temperature sensing (DTS) cables are run in tandem, enabling the detection of such cooling events. The increasing use of LF-DAS for characterizing unconventional hydraulic fracture completions demands an investigation of the effects of temperature on the measured strain response by LF-DAS. Researchers have demonstrated that LF-DAS can be used to extract the temporal derivative of temperature for use as a differential-temperature-gradient sensor. However, differential-temperature-gradient sensing is predicated on the ability to filter strain components out of the optical signal. In this work, beginning with an equation for optical phase shift of LF-DAS signals, a model relating strain, temperature, and optical phase shift is explicitly developed. The formula provides insights into the relative strength of strain and temperature effects on the phase shift. The uncertainty in the strain-rate measurements due to thermal effects is estimated. The relationship can also be used to quantify uncertainties in differential-temperature-gradient sensors due to strain perturbations. Additionally, a workflow is presented to simulate the LF-DAS response accounting for both strain and temperature effects. Hydraulic fracture geometries are generated with a 3D fracture simulator for a multistage unconventional completion. The fracture width distributions are imported by a displacement discontinuity method (DDM) program to compute the strain rates along an observation well. An analytic model is used to approximate the temperature in the fracture. Using the derived formulae for optical phase shift, the model outputs are then used to compute the LF-DAS response at a fiber-optic cable, enabling the generation of waterfall plots including both strain and thermal effects. The model results suggest that before, during, and immediately following a fracture intersecting a well instrumented with fiber, the strain on the fiber drives the LF-DAS signal. However, at later times, as completion fluid cools the observation well, the temperature component of the LF-DAS signal can be equal to or exceed the strain component. The modeled results are compared to a published field case in an attempt to enhance the interpretation of LF-DAS waterfall plots. Finally, we propose a sensing configuration to identify the events when “wet fractures” (fractures with fluids) intersect the observation well.


2021 ◽  
Author(s):  
Smith Edward Leggett ◽  
Ding Zhu ◽  
Alfred Daniel Hill

Abstract Fiber-optic cables cemented outside of the casing of an unconventional well measure cross-well strain changes during fracturing of neighboring wells with low-frequency distributed acoustic sensing (LF-DAS). As a hydraulic fracture intersects an observation well instrumented with fiber-optic cables, fracture fluid injected at ambient temperatures can cool a section of the sensing fiber. Often, LF-DAS and distributed temperature sensing (DTS) cables are run in tandem, enabling the detection of such cooling events. The increasing use of LF-DAS for characterizing unconventional hydraulic fracture completions demands an investigation of the effects of temperature on the measured strain response by LF-DAS. Researchers have demonstrated that LF-DAS can be used to extract the temporal derivative of temperature for use as a differential-temperature-gradient sensor. However, differential-temperature-gradient sensing is predicated on the ability to filter strain components out of the optical signal. In this work, beginning with an equation for optical phase shift of LF-DAS signals, a model relating strain, temperature, and optical phase shift is explicitly developed. The formula provides insights into the relative strength of strain and temperature effects on the phase shift. The uncertainty in the strain-rate measurements due to thermal effects is estimated. The relationship can also be used to quantify uncertainties in differential-temperature-gradient sensors due to strain perturbations. Additionally, a workflow is presented to simulate the LF-DAS response accounting for both strain and temperature effects. Hydraulic fracture geometries are generated with a 3D fracture simulator for a multi-stage unconventional completion. The fracture width distributions are imported by a displacement discontinuity method program to compute the strain-rates along an observation well. An analytic model is used to approximate the temperature in the fracture. Using the derived formulae for optical phase shift, the model outputs are then used to compute the LF-DAS response at a fiber-optic cable, enabling the generation of waterfall plots including both strain and thermal effects. The model results suggest that before, during, and immediately following a fracture intersecting a well instrumented with fiber, the strain on the fiber drives the LF-DAS signal. However, at later times, as completion fluid cools the observation well, the temperature component of the LF-DAS signal can equal or exceed the strain component. The modeled results are compared to a published field case in an attempt to enhance interpretation of LF-DAS waterfall plots. Finally, we propose a sensing configuration in order to identify the events when "wet fractures" (fractures with fluids) intersect the observation well.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6226
Author(s):  
Eva Koren ◽  
Miran Veselič ◽  
Goran Vižintin

In the area of the the Krško alluvial field, the Brežice hydroelectric power plant (BHPP), with its surface water reservoir, was completed in 2017. The new BHPP reservoir dam is located approximately 7 km air distance downstream of the old Krško nuclear power plant (NEK) reservoir dam. The NEK dam was built in the 1970s. The primary purpose of the NEK reservoir is to provide fresh water for cooling the NEK nuclear reactor. To assess the impact of the newly built surface water reservoir on groundwater, we performed a series of data analyses prior to its construction. One part of the analysis relating to data from the monitoring facility of the NEK showed an interesting correspondence between the water level oscillation in the NEK reservoir and the groundwater oscillation in the nearby observation well. Based on measurements taken in 2000, we sought to estimate the clogging of the Sava riverbed sediments in the area of the old NEK surface water reservoir. To determine the permeability of the riverbed sediments, we applied geometry similar to that chosen by Hantush for his pumping test method. Using Fourier analysis, we determined the dominant frequencies from the hydrograph records of the NEK surface water reservoir and from the pressure probe in the nearby observation well. Based on the determination of the dominant frequency, we used the wave equation to compare the influence of different values of the hydraulic transmissivity of the clogged part of the NEK surface water reservoir on the transfer of its water oscillations to the groundwater in the observation well. For the hydraulic values of the non-clogged part of the aquifer (T, S), we assumed the values from the pumping experiments performed in the alluvial aquifer of Krško polje. We also assumed that the aquifer is homogeneous and isotropic, as Hantush had assumed in his method for the determination of semipervious river beds. The results obtained indicated the potential for estimation of the thickness of the clogging layer which, by analogy from applied geophysics, can be called the apparent thickness. This meant that the thickness could be determined on the basis of the default conceptual model rather than on real measurements. The presented method shows the potential for using the analysis of periodic oscillations in river reservoir level and nearby piezometers, as a method of monitoring riverbed clogging, in cases where periodical oscillations in reservoir level occur and observation wells are near enough to detect the oscillations.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5791
Author(s):  
Nicolò Giordano ◽  
Louis Lamarche ◽  
Jasmin Raymond

Two methods are currently available to estimate in a relatively short time span the subsurface heat capacity: (1) laboratory analysis of rock/soil samples; (2) measure the heat diffusion with temperature sensors in an observation well. Since the first may not be representative of in-situ conditions, and the second imply economical and logistical issues, a third option might be possible by means of so-called oscillatory thermal response tests (OTRT). The aim of the study was to evaluate the effectiveness of an OTRT as a tool to infer the subsurface heat capacity without the need of an observation well. To achieve this goal, an OTRT was carried out in a borehole heat exchanger (BHE). The total duration of injection was 6 days, with oscillation period of 12 h and amplitude of 10 W m−1. The results of the proposed methodology were compared 3-D numerical simulations and to a TRT with a constant heat injection rate with temperature response monitored from a nearby observation well. Results show that the OTRT succeeded to infer the expected subsurface heat capacity, but uncertainty is about 15% and the radial depth of penetration is only 12 cm. The parameters having most impact on the results are the subsurface thermal conductivity and the borehole thermal resistance. The OTRT performed and analyzed in this study also allowed to evaluate the thermal conductivity with similar accuracy compared to conventional TRTs (3%). On the other hand, it returned borehole thermal resistance with high uncertainty (15%), in particular due to the duration of the test. The final range of heat capacity is wide, highlighting challenges to currently use OTRT in the scope of ground-coupled heat pump system design. OTRT appears a promising tool to evaluate the heat capacity, but more field testing and mathematical interpretation of the sinusoidal response is needed to better isolate the subsurface from the BHE contribution and reduce the uncertainty.


2021 ◽  
Author(s):  
Georgios Nikolakopoulos-Skelly ◽  
Marie Ann Giddins ◽  
Rong Xu ◽  
Chioma Ezeogu ◽  
Matthew Jackson

Abstract In this paper, we describe an approach to designing monitoring schemes for carbon dioxide sequestration in saline aquifers. Changes in key parameters are investigated over timescales of up to a thousand years. The study addresses movement of the CO2 plume, possible locations for observation wells and the period for which a storage location should be monitored. For the initial sensitivity analysis, we use a simple homogeneous reservoir simulation model to understand how reservoir, operational and model parameters affect the amount of mobile CO2 remaining at different times over the storage period. The parameters with the greatest impact are taken forward to uncertainty studies, which are conducted on two reservoir models with more realistic geological characteristics: one with lateral extensive baffles and one with sand channels. For these cases, we investigate the movement of the CO2 plume and its arrival at possible locations for an observation well. Results from the sensitivity analysis indicate that the most influential parameters are horizontal permeability, dipping angle, critical gas saturation, salinity, the period of injection and the capillary pressure curve. The results from the uncertainty studies indicate that for the two heterogeneous models, a reasonable monitoring period is in the range of 60 to 150 years and that the movement of the plume probably stops after approximately 100 years. The arrival time of CO2 at the observation well can be predicted with greater confidence when the well is in close proximity to the injector and in the direction in which CO2 will preferably move. A correlation analysis on the uncertain parameters shows that the main contributor affecting the amount of mobile CO2 is critical gas saturation, followed by dipping angle and the period of injection. While previous studies focus on how different parameters affect immobilization of CO2, this study aims to develop a methodology to plan long-term monitoring of mobile CO2. Prediction of the expected plume movement can help to determine suitable observation well locations and reasonable timescales for the monitoring process.


Sign in / Sign up

Export Citation Format

Share Document