Using a Committee Machine With Artificial Neural Networks To Predict PVT Properties of Iran Crude Oil

2011 ◽  
Vol 14 (01) ◽  
pp. 129-137 ◽  
Author(s):  
Fatemeh Alimadadi ◽  
Amin Fakhri ◽  
Diako Farooghi ◽  
Hossein Sadati
Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8494
Author(s):  
Radosław Puka ◽  
Bartosz Łamasz ◽  
Marek Michalski

During the COVID-19 pandemic, uncertainty has increased in many areas of both business supply and demand, notably oil demand and pricing have become even more unpredictable than before. Thus, for companies that buy large quantities of oil, effective oil price risk management is crucial for business success. Nevertheless, businesses’ risk appetite, specifically willingness to accept more risk to achieve desired business benefits, varies significantly. The aim of this paper is to deepen the analysis of the effectiveness of employing artificial neural networks (ANNs) in hedging against oil price changes by searching for buy signals for European WTI (West Texas Intermediate) crude oil call options, while taking into account the level of risk appetite. The number of generated buy signals decreases with increasing risk appetite, and thus the amount of capital necessary to buy options decreases. However, the results show that fewer buy signals do not necessarily translate into lower returns generated by networks in a given class. Thus, higher levels of return on the purchase of call options may be obtained. The conducted analyses clearly proved that ANNs can be a useful tool in the process of managing WTI crude oil price change risk. Using the analyzed network parameters, up to 29.9% of the theoretical maximum possible profit from buying options every day was obtained in the test set. Furthermore, all proposed networks generated some profit for the test set. The values of all indicators used in the analyses confirm that the ANNs can be effective regardless of the level of risk appetite, so in this respect they may be described as a universal decision support tool.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3308
Author(s):  
Radosław Puka ◽  
Bartosz Łamasz ◽  
Marek Michalski

Despite the growing share of renewable energy sources, most of the world energy supply is still based on hydrocarbons and the vast majority of world transport is fuelled by oil products. Thus, the profitability of many companies may depend on the effective management of oil price risk. In this article, we analysed the effectiveness of artificial neural networks in hedging against the risk of WTI crude oil prices increase. This was reformulated from a regressive problem to a classification problem. The effectiveness of our approach, using artificial neural networks to classify observations, was verified for over ten years of WTI futures quotes, starting from 2009. The data analysis presented in this paper confirmed that the buyer of a call option was more often likely to incur a loss as a result of its purchase than make a profit after the final payoff from the call option. The results of the conducted research confirm that neural networks can be an effective form of protection against the risk of price fluctuations. The effectiveness of a network’s operation depends on the choice of assessment indicators, but analyses show that the networks which, for the indicator that was selected, gave the best results for the training set, also resulted in positive rates of return for the test set. Significantly, we also showed interdependence between seemingly unrelated indicators: percentage of the best possible results achieved in the analysed period of time by the proposed method and percentage of all available call options that were purchased based on the results from the networks that were used.


Sign in / Sign up

Export Citation Format

Share Document