A New Method for History Matching and Forecasting Shale Gas Reservoir Production Performance with a Dual Porosity Model

Author(s):  
Orkhan Samandarli ◽  
Hasan A. Al Ahmadi ◽  
Robert A. Wattenbarger
2012 ◽  
Vol 52 (2) ◽  
pp. 648
Author(s):  
Bingxiang Xu ◽  
Manouchehr Haghighi ◽  
D Cooke

Eagle Ford Shale in South Texas is one of the recent shale play in the US, which began developing in late 2008. To evaluate the reservoir performance and make the production forecasting for this reservoir, one multi-stage fractured horizontal well was modelled and history matching was done using the available 250 days of production data. Two different flow models of dual-porosity and multi-porosity have been examined. In the multi-porosity model, both approaches of instant and time-dependent sorption have been investigated. Also, two approaches of negative skin and transverse fractures were used to model the effect of hydraulic fracturing. For history matching of early production data, all the models were successfully matched; however, all models predict differently for production forecasting. Comparing both production forecasts for 10 years, the multi-porosity model forecasts 14% more than dual-porosity model. This is because in the dual-porosity model, only free porosity is considered and no adsorbed gas in micro-pores is assumed; in multi-porosity model, both macro and micro porosities are active in shale gas reservoir. It is concluded that the early production data is not reliable to validate the simulation and make the production forecasting. This is because in early production data, all gas are produced from the fracture system and the matrix contribution is not significant or it has not been started yet. Furthermore, the effect of matrix sub-division on the simulation was studied: the free gas in matrix can contribute to production more quickly when matrix sub-cells increase.


Geofluids ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-17 ◽  
Author(s):  
Qi-guo Liu ◽  
Wei-hong Wang ◽  
Hua Liu ◽  
Guangdong Zhang ◽  
Long-xin Li ◽  
...  

Shale gas reservoir has been aggressively exploited around the world, which has complex pore structure with multiple transport mechanisms according to the reservoir characteristics. In this paper, a new comprehensive mathematical model is established to analyze the production performance of multiple fractured horizontal well (MFHW) in box-shaped shale gas reservoir considering multiscaled flow mechanisms (ad/desorption and Fick diffusion). In the model, the adsorbed gas is assumed not directly diffused into the natural macrofractures but into the macropores of matrix first and then flows into the natural fractures. The ad/desorption phenomenon of shale gas on the matrix particles is described by a combination of the Langmuir’s isothermal adsorption equation, continuity equation, gas state equation, and the motion equation in matrix system. On the basis of the Green’s function theory, the point source solution is derived under the assumption that gas flow from macropores into natural fractures follows transient interporosity and absorbed gas diffused into macropores from nanopores follows unsteady-state diffusion. The production rate expression of a MFHW producing at constant bottomhole pressure is obtained by using Duhamel’s principle. Moreover, the curves of well production rate and cumulative production vs. time are plotted by Stehfest numerical inversion algorithm and also the effects of influential factors on well production performance are analyzed. The results derived in this paper have significance to the guidance of shale gas reservoir development.


Sign in / Sign up

Export Citation Format

Share Document