early production
Recently Published Documents


TOTAL DOCUMENTS

309
(FIVE YEARS 77)

H-INDEX

29
(FIVE YEARS 5)

2021 ◽  
Author(s):  
Edgie Yuda Kaesti ◽  
Heriyanto null ◽  
Theomas Abdi Jaya ◽  
Michael Janzen Arinatama ◽  
Adha Bayu Wijaya

2021 ◽  
Author(s):  
Maxim Chertov ◽  
Franck Ivan Salazar Suarez ◽  
Mikhail Kaznacheev ◽  
Ludmila Belyakova

Abstract In the paper, we document one iteration of the continuous improvement of well performance undertaken in the Oriente Basin in Ecuador. In the past, it had been observed that well economics was sometimes degraded by the issues related to proppant flowback from hydraulic fractures. Proppant flowback resulted in extra costs from well cleanouts, pump replacement, and damage to fracture conductivity. After evaluation of proppant flowback cases using the combined modeling workflow that simulates fracture growth, proppant placement, and early production of solids and fluids, it had been proposed to modify fracture designs and well startup strategy. In this paper, we review the first results of implementation of these modifications in the field and evaluate the significance of improvements.


2021 ◽  
Author(s):  
Fazeel Ahmad ◽  
Zohaib Channa ◽  
Fahad Al Hosni ◽  
Salman Farhan Nofal ◽  
Ziad Talat Libdi ◽  
...  

Abstract The paper discusses the pilot project in ADNOC Offshore to assess the Autonomous Inflow Control Device (AICD) technology as an effective solution for increasing oil production over the life of the field. High rate of water and gas production in horizontal wells is one of the key problems from the commencement of operation due to the high cost of produced water and gas treatment including several other factors. Early Gas breakthrough in wells can result in shut-in to conserve reservoir energy and to meet the set GOR guidelines. The pilot well was shut-in due to high GOR resulted from the gas breakthrough. A pilot project was implemented to evaluate the ability of autonomous inflow control technology to manage gas break through early in the life of the well spanned across horizontal wellbore. And also to balance the production influx profile across the entire lateral length and to compensate for the permeability variation and therefore the productivity of each zone. Each compartment in the pilot well was equipped with AICD Screens and Swell-able Packers across horizontal open hole wellbore to evaluate oil production and defer gas breakthrough. Some AICDs were equipped with treatment valve for the compartments that needed acid simulation to enhance the effectiveness of the zone. The selection factors for installing number of production valves in the pilot well per each AICD was based on reservoir and field data. Pre-modeling of the horizontal wellbore section with AICD was performed using commercial simulation software (NETool). After the first pilot was completed, a detailed technical analysis was conducted and based on the early production results from the pilot well showed that AICD completions effectively managed gas production by delaying the gas break through and restricting gas inflow from the reservoir with significant GOR reduction ±40% compared to baseline production performance data from the open hole without AICD thus increasing oil production. The pilot well performed positively to the AICD completion allowing to produce healthy oil and meeting the guidelines. The early production results are in line with NETool simulation modelling, thereby increasing assurance in the methods employed in designing the AICD completion for the well and candidate selection. This paper discusses the successful AICD completion installation and production operation in pilot well in ADNOC Offshore to manage GOR and produced the well with healthy oil under the set guidelines. This will enable to re-activate wells shut-in due to GOR constraint to help meeting the sustainable field production target.


2021 ◽  
Author(s):  
Selma Belhimeur ◽  
Sylvie Briquet ◽  
Roger Peronet ◽  
Jennifer Pham ◽  
Pierre-Henri Commere ◽  
...  

Plasmodium sporozoites inoculated by Anopheles mosquitoes into the skin of the mammalian host migrate to the liver before infecting hepatocytes. Previous work demonstrated that early production of IL-6 in the liver was found to be detrimental for the parasite growth, leading to the acquisition of a long-lasting immune protection. Considering IL-6 as a critical pro-inflammatory signal, we explored a novel approach whereby the parasite itself encodes for the murine IL-6 gene. We generated transgenic P.berghei parasites that express murine IL-6 during liver stage development. Though IL-6 transgenic sporozoites develop into exo-erythrocytic forms in cultured hepatocytes in vitro, these parasites were not capable of inducing a blood stage infection in mice. Furthermore, immunization of mice with transgenic IL-6 sporozoites elicited a long-lasting CD8+ T cell-mediated protective immunity against a subsequent infectious sporozoite challenge. Collectively, this study demonstrates that parasite-encoded IL-6 impairs Plasmodium infection at the liver stage, forming the basis of a novel suicide vaccine strategy to elicit protective antimalarial immunity.


2021 ◽  
Vol 9 (10) ◽  
pp. 2136
Author(s):  
Klara Kubelkova ◽  
Ales Macela

Immune responses to intracellular pathogens depend largely upon the activation of T helper type 1-dependent mechanisms. The contribution of B cells to establishing protective immunity has long been underestimated. Francisella tularensis, including a number of subspecies, provides a suitable model for the study of immune responses against intracellular bacterial pathogens. We previously demonstrated that Francisella infects B cells and activates B-cell subtypes to produce a number of cytokines and express the activation markers. Recently, we documented the early production of natural antibodies as a consequence of Francisella infection in mice. Here, we summarize current knowledge on the innate and acquired humoral immune responses initiated by Francisella infection and their relationships with the immune defense systems.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Zhiming Hu ◽  
Yingying Xu ◽  
Xiangui Liu ◽  
Xianggang Duan ◽  
Jin Chang

The shale gas productivity model based on shale gas nonlinear seepage mechanism is an effective way to reasonably predict productivity. The incomplete gas nonlinear effects considered in the current production prediction models can lead to inaccurate production prediction. Based on the conventional five-zone compound flow model, comprehensive gas nonlinearities were considered in the improved compound linear flow model proposed in the paper and a semianalytical solution for productivity was obtained. The reliability of the productivity model was verified by the field data, and then, the 20-year production performance analysis of the gas well was studied. Ultimately, the key influencing factors of the fracture control stage and matrix control stage have been analyzed. Research indicated the following: (1) the EUR predicted by the productivity model is higher than the EUR that the comprehensive nonlinear effects are not considered, which demonstrated that the various nonlinear effects cannot be neglected during the production prediction to ensure the greater calculation accuracy; (2) during the early production stage of shale reservoir, the adsorbed gas is basically not recovered, and the cumulative adsorption contribution rate does not exceed 10%. The final adsorption gas contribution rate is 23.28%, and the annual adsorption rate can exceed 50% in the 20th year, showing that free gas and adsorbed gas are, respectively, important sources of the early stage of production and long-term stable production; (3) the widely ranged three-dimensional fracturing reformation of shale reservoirs and reasonable bottom hole pressure in the later matrix development process should be implemented to increase the effective early production of the reservoir and ensure the earlier gas production process of the matrix development. The findings of this study can help for better ensuring the prediction accuracy of the estimated ultimate recovery and understanding the main influencing factors of the dynamic performance of gas wells so as to provide a theoretical reference for production optimization and development plan formulation of the shale gas reservoirs.


2021 ◽  
Author(s):  
Alexandra Cely ◽  
Andrei Zaostrovski ◽  
Tao Yang ◽  
Knut Uleberg ◽  
Margarete Kopal

Abstract There are increased development activities in shale reservoirs with ultra-low permeability thanks to the advances in drilling and fracking technology. However, representative reservoir fluid samples are still difficult to acquire. The challenge leads to limited reservoir fluid data and large uncertainties for shale play evaluation, field development, and production optimization. In this work, we built a large unconventional reservoir fluid database with more than 2400 samples from shale reservoirs in Canada, Argentina, and the USA, comprising early production surface gas data and traditional PVT data from selected shale assets. A machine learning approach was applied to the database to predict gas to oil ratio (GOR) in shale reservoirs. To enhance regional correlations and obtain a more accurate GOR prediction, we developed a machine learning model focused on Canada shale plays data, intended for wells with limited reservoir fluid data available and located within the same region. Both surface gas compositional data and well location and are input features to this model. In addition, we developed an additional machine learning model for the objective of a generic GOR prediction model without shale dependency. The database includes Canada shale data and Argentina and USA shale data. The GOR predictions obtained from both models are good. The machine learning model circumscribed to the Canada shale reservoirs has a mean percentage error (MAPE) of 4.31. In contrast, the generic machine learning model, which includes additional data from Argentina and USA shale assets, has a MAPE of 4.86. The better accuracy of the circumscribed Canada model is due to the introduction of the geospatial well location to the model features. This study confirms that early production surface gas data can be used to predict well GOR in shale reservoirs, providing an economical alternative for the sampling challenges during early field development. Furthermore, the GOR prediction offers access to a complete set of reservoir fluid properties which assists the decision-making process for shale play evaluation, completion concept selection, and production optimization.


2021 ◽  
Author(s):  
Jane-Frances Igbadumhe ◽  
Mirjam Furth ◽  
Jack Bonoli ◽  
John Dzielski

Abstract Floating Production Storage and Offloading Units (FPSOs) will continue to be in high demand because of their numerous advantages; such as, their ability to offer early production and operate in ultra-deep water locations, while remaining easy to relocate to meet changing needs. By design, slack cargo tanks are almost always present in FPSOs due to continuous loading and offloading operations; however, the presence of slack cargo impacts the seakeeping stability abilities of FPSOs. There are limited published experimental data on coupled sloshing with seakeeping of stationary vessels, and existing studies on this have focused on single row cargo tanks which is seldom the case in FPSOs. The aim of this paper is to study roll motion coupled with sloshing in partially-filled pair of two-row tanks of a stationary FPSO model exposed to regular beam waves. The model tests was performed in the Davidson Laboratory towing tank at Stevens Institute of Technology. The FPSO model response in roll was measured, and the time histories of sloshing oscillation were measured on the starboard and port side of one of the stern cargo tanks. The results show that varying internal cargo sloshing leads to unpredictable motion response of floating vessels that should be accounted for in the design and offloading operations of FPSO.


2021 ◽  
Vol 73 (08) ◽  
pp. 51-52
Author(s):  
Chris Carpenter

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 202246, “Wheatstone: What We Have Learned in Early Production Life,” by John Pescod, SPE, Paul Connell, SPE, and Zhi Xia, Chevron, et al., prepared for the 2020 SPE Asia Pacific Oil and Gas Conference and Exhibition, originally scheduled to be held in Perth, Australia, 20–22 October. The paper has not been peer reviewed. Wheatstone and Iago gas fields, part of the larger Wheatstone project, commenced production in June 2017. The foundation subsea system includes nine Wheatstone and Iago development wells tied back to a central Wheatstone platform (WP) for processing. Hydrocarbons then flow through an export pipeline to an onshore processing facility that includes two liquefied-natural-gas (LNG) trains and a domestic gas facility. The complete paper highlights some of the key learnings in well and reservoir surveillance analysis and optimization (SA&O) developed using data from early production. Asset Overview Chevron Australia’s Wheatstone project is in the North West Shelf region offshore Australia (Fig. 1). Two gas fields, Wheatstone and Iago (along with a field operated by a different company), currently tie into the WP in the Northern Carnarvon Basin. These two gas fields are in water depths between 150 and 400 m. The platform processes gas and condensate through dehydration and compression facilities before export by a 220-km, 44-in., trunkline to two 4.45-million-tonnes/year LNG trains and a 200 tera-joule/day domestic gas plant. A Wheatstone/Iago subsea system consisting of two main corridors delivers production from north and south of the Wheatstone and Iago fields to the WP. Currently, the subsea system consists of nine subsea foundation development wells, three subsea production manifolds, two subsea 24-in. production flowlines, and two subsea 14-in. utility lines. The nine foundation development wells feed the subsea manifolds at rates of up to 250 MMscf/D. These wells have openhole gravel-pack completions for active sand control and permanent downhole gauges situated approximately 1000-m true vertical depth above the top porosity of multi-Darcy reservoir intervals for pressure and temperature monitoring. All wells deviate between 45 and 60° through the reservoir with stepout lengths of up to 2.5 km. The two subsea 24-in. production flowlines carry production fluids from the subsea manifolds to two separation trains on the WP. Each platform inlet production separator can handle up to 800 MMscf/D. The two 14-in. utility flowlines installed to the subsea manifolds allow routing of a single well to the platform multiuse header, which can direct flow into the multiuse separator (MUS) or other production separators at a rate of 250 MMscf/D.


2021 ◽  
Vol 6 (1-2) ◽  
pp. 43-69
Author(s):  
Martin Gaenszle

Abstract With the rise of ethnic politics in Nepal, the Limbu (or: Yakthumba) have made increasing use of the Limbu script, also known as Srijanga or Kiranti. Whereas in the past this script was suppressed by the state and known only to a minority, since the return of democracy to Nepal in the 1990s a new literature using this script has come into being. Here, religious books play a prominent role. This essay deals with the emerging importance of the script as a marker of ethnicity since its first general propagation by Iman Singh Chemjong and Phalgunanda Lingden in the early twentieth century. It focuses on the early production of printed books, in particular books published by followers of the Satyahangma movement, which promotes reforms of Kiranti religion and society.


Sign in / Sign up

Export Citation Format

Share Document