Simulation and history matching of a shale gas reservoir using different models in Eagle Ford Basin

2012 ◽  
Vol 52 (2) ◽  
pp. 648
Author(s):  
Bingxiang Xu ◽  
Manouchehr Haghighi ◽  
D Cooke

Eagle Ford Shale in South Texas is one of the recent shale play in the US, which began developing in late 2008. To evaluate the reservoir performance and make the production forecasting for this reservoir, one multi-stage fractured horizontal well was modelled and history matching was done using the available 250 days of production data. Two different flow models of dual-porosity and multi-porosity have been examined. In the multi-porosity model, both approaches of instant and time-dependent sorption have been investigated. Also, two approaches of negative skin and transverse fractures were used to model the effect of hydraulic fracturing. For history matching of early production data, all the models were successfully matched; however, all models predict differently for production forecasting. Comparing both production forecasts for 10 years, the multi-porosity model forecasts 14% more than dual-porosity model. This is because in the dual-porosity model, only free porosity is considered and no adsorbed gas in micro-pores is assumed; in multi-porosity model, both macro and micro porosities are active in shale gas reservoir. It is concluded that the early production data is not reliable to validate the simulation and make the production forecasting. This is because in early production data, all gas are produced from the fracture system and the matrix contribution is not significant or it has not been started yet. Furthermore, the effect of matrix sub-division on the simulation was studied: the free gas in matrix can contribute to production more quickly when matrix sub-cells increase.

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Hyeonsu Shin ◽  
Viet Nguyen-Le ◽  
Min Kim ◽  
Hyundon Shin ◽  
Edward Little

This study developed a production-forecasting model to replace the numerical simulation and the decline curve analysis using reservoir and hydraulic fracture data in Montney shale gas reservoir, Canada. A shale-gas production curve can be generated if some of the decline parameters such as a peak rate, a decline rate, and a decline exponent are properly estimated based on reservoir and hydraulic fracturing parameters. The production-forecasting model was developed to estimate five decline parameters of a modified hyperbolic decline by using significant reservoir and hydraulic fracture parameters which are derived through the simulation experiments designed by design of experiments and statistical analysis: (1) initial peak rate ( P hyp ), (2) hyperbolic decline rate ( D hyp ), (3) hyperbolic decline exponent ( b hyp ), (4) transition time ( T transition ), and (5) exponential decline rate ( D exp ). Total eight reservoir and hydraulic fracture parameters were selected as significant parameters on five decline parameters from the results of multivariate analysis of variance among 11 reservoir and hydraulic fracture parameters. The models based on the significant parameters had high predicted R 2 values on the cumulative production. The validation results on the 1-, 5-, 10-, and 30-year cumulative production data obtained by the simulation showed a good agreement: R 2 > 0.89 . The developed production-forecasting model can be also applied for the history matching. The mean absolute percentage error on history matching was 5.28% and 6.23% for the forecasting model and numerical simulator, respectively. Therefore, the results from this study can be applied to substitute numerical simulations for the shale reservoirs which have similar properties with the Montney shale gas reservoir.


2012 ◽  
Author(s):  
Bingxiang Xu ◽  
Manouchehr Haghighi ◽  
Dennis A. Cooke ◽  
XiangFang Li

Ground Water ◽  
2017 ◽  
Vol 55 (4) ◽  
pp. 558-564 ◽  
Author(s):  
Seiyed Mossa Hosseini ◽  
Behzad Ataie-Ashtiani

Sign in / Sign up

Export Citation Format

Share Document