Three-Phase Relative Permeability and Hystresis Model for Simulation of Water Alternating Gas (WAG) Injection

Author(s):  
Hamidreza Shahverdi ◽  
Mehran Sohrabi
SPE Journal ◽  
2013 ◽  
Vol 18 (05) ◽  
pp. 841-850 ◽  
Author(s):  
H.. Shahverdi ◽  
M.. Sohrabi

Summary Water-alternating-gas (WAG) injection in waterflooded reservoirs can increase oil recovery and extend the life of these reservoirs. Reliable reservoir simulations are needed to predict the performance of WAG injection before field implementation. This requires accurate sets of relative permeability (kr) and capillary pressure (Pc) functions for each fluid phase, in a three-phase-flow regime. The WAG process also involves another major complication, hysteresis, which is caused by flow reversal happening during WAG injection. Hysteresis is one of the most important phenomena manipulating the performance of WAG injection, and hence, it has to be carefully accounted for. In this study, we have benefited from the results of a series of coreflood experiments that we have been performing since 1997 as a part of the Characterization of Three-Phase Flow and WAG Injection JIP (joint industry project) at Heriot-Watt University. In particular, we focus on a WAG experiment carried out on a water-wet core to obtain three-phase relative permeability values for oil, water, and gas. The relative permeabilities exhibit significant and irreversible hysteresis for oil, water, and gas. The observed hysteresis, which is a result of the cyclic injection of water and gas during WAG injection, is not predicted by the existing hysteresis models. We present a new three-phase relative permeability model coupled with hysteresis effects for the modeling of the observed cycle-dependent relative permeabilities taking place during WAG injection. The approach has been successfully tested and verified with measured three-phase relative permeability values obtained from a WAG experiment. In line with our laboratory observations, the new model predicts the reduction of the gas relative permeability during consecutive water-and-gas-injection cycles as well as the increase in oil relative permeability happening in consecutive water-injection cycles.


SPE Journal ◽  
2016 ◽  
Vol 21 (03) ◽  
pp. 0799-0808 ◽  
Author(s):  
H.. Shahverdi ◽  
M.. Sohrabi

Summary Large quantities of oil usually remain in oil reservoirs after conventional waterfloods. A significant part of this remaining oil can still be economically recovered by water-alternating-gas (WAG) injection. WAG injection involves drainage and imbibition processes taking place sequentially; therefore, the numerical simulation of the WAG process requires reliable knowledge of three-phase relative permeability (kr) accounting for cyclic-hysteresis effects. In this study, the results of a series of unsteady-state two-phase displacements and WAG coreflood experiments were used to investigate the behavior of three-phase kr and hysteresis effects in the WAG process. The experiments were performed on two different cores with different characteristics and wettability conditions. An in-house coreflood simulator was developed to obtain three-phase relative permeability values directly from unsteady-state WAG experiments by history matching the measured recovery and differential-pressure profiles. The results show that three-phase gas relative permeability is reduced in consecutive gas-injection cycles and consequently the gas mobility and injectivity drop significantly with successive gas injections during the WAG process, under different rock conditions. The trend of hysteresis in the relative permeabilty of gas (krg) partly contradicts the existing hysteresis models available in the literature. The three-phase water relative permeability (krw) of the water-wet (WW) core does not exhibit considerable hysteresis effect during different water injections, whereas the mixed-wet (MW) core shows slight cyclic hysteresis. This may indicate a slight increase of the water injectivity in the subsequent water injections in the WAG process under MW conditions. Insignificant hysteresis is observed in the oil relative permeability (kro) during different gas-injection cycles for both WW and MW rocks. However, a considerable cyclic-hysteresis effect in kro is observed during water-injection cycles of WAG, which is attributed to the reduction of the residual oil saturation (ROS) during successive water injections. The kro of the WW core exhibits much-more cyclic-hysteresis effect than that of the MW core. No models currently exist in reservoir simulators that can capture the observed cyclic-hysteresis effect in oil relative permeability for the WAG process. Investigation of relative permeability data obtained from these displacement tests at different rock conditions revealed that there is a significant discrepancy between two-phase and three-phase relative permeability of all fluids. This highlights that not only the three-phase relative permeability of the intermediate phase (oil), but also the three-phase kr of the wetting phase (water) and nonwetting phase (gas) are functions of two independent saturations.


SPE Journal ◽  
2013 ◽  
Vol 18 (01) ◽  
pp. 114-123 ◽  
Author(s):  
S. Mobeen Fatemi ◽  
Mehran Sohrabi

Summary Laboratory data on water-alternating-gas (WAG) injection for non-water-wet systems are very limited, especially for near-miscible (very low IFT) gas/oil systems, which represent injection scenarios involving high-pressure hydrocarbon gas or CO2 injection. Simulation of these processes requires three-phase relative permeability (kr) data. Most of the existing three-phase relative permeability correlations have been developed for water-wet conditions. However, a majority of oil reservoirs are believed to be mixed-wet and, hence, prediction of the performance of WAG injection in these reservoirs is associated with significant uncertainties. Reliable simulation of WAG injection, therefore, requires improved relative permeability and hysteresis models validated by reliable measured data. In this paper, we report the results of a comprehensive series of coreflood experiments carried out in a core under natural water-wet conditions. These included water injection, gas injection, and also WAG injection. Then, to investigate the impact of wettability on the performance of these injection strategies, the wettability of the same core was changed to mixed-wet (by aging the core in an appropriate crude oil) and a similar set of experiments were performed in the mixed-wet core. WAG experiments under both wettability conditions started with water injection (I) followed by gas injection (D), and this cyclic injection of water and gas was repeated (IDIDID). The results show that in both the water-wet and mixed-wet cores, WAG injection performs better than water injection or gas injection alone. Changing the rock wettability from water-wet to mixed-wet significantly improves the performance of water injection. Under both wettability conditions (water-wet and mixed-wet), the breakthrough (BT) of the gas during gas injection happens sooner than the BT of water in water injection. Ultimate oil recovery by gas injection is considerably higher than that obtained by water injection in the water-wet system, while in the mixed-wet system, gas injection recovers considerably less oil.


SPE Journal ◽  
2014 ◽  
Vol 20 (01) ◽  
pp. 35-48 ◽  
Author(s):  
Hamidreza Shahverdi ◽  
Mehran Sohrabi

Summary Multiphase flow takes place in many petroleum reservoirs—in particular, mature fields and reservoirs under fluid [e.g., gas, water-alternating-gas (WAG)] injection. The numerical simulation of such reservoirs requires knowledge of flow functions (i.e., relative permeability and capillary pressure). Because experimental measurement of fluid permeabilities (in particular) under three-phase-flow conditions is very time-consuming and difficult, many correlations and models were developed and these are widely used instead of measured data. In this study, we have used the results of a comprehensive set of WAG-injection coreflood experiments performed under different wettability conditions and core-permeability values to obtain relative permeabilites of oil, water, and gas under reservoir pressure and temperature. Three-phase relative permeability of each phase was obtained by history matching the measured production and differential pressure obtained in the laboratory. The results of the experiments revealed significant cyclic hysteresis effects in gas and oil relative permeability. We proposed new formulations and methodology for the modeling of cyclic hysteresis of three-phase relative permeability during WAG injection. This technique is a direct method that uses measured three-phase kr data obtained from the first cycle of WAG injection to predict the relative permeability of the subsequent cycles. The integrity of this technique was validated against the three-phase kr data obtained from our WAG experiments. We also assess the validity of the WAG-injection hysteresis model available in reservoir simulators against our three-phase relative permeability data to evaluate its performance.


SPE Journal ◽  
2018 ◽  
Vol 23 (06) ◽  
pp. 2394-2408 ◽  
Author(s):  
Sajjad S. Neshat ◽  
Gary A. Pope

Summary New coupled three-phase hysteretic relative permeability and capillary pressure models have been developed and tested for use in compositional reservoir simulators. The new formulation incorporates hysteresis and compositional consistency for both capillary pressure and relative permeability. This approach is completely unaffected by phase flipping and misidentification, which commonly occur in compositional simulations. Instead of using phase labels (gas/oil/solvent/aqueous) to define hysteretic relative permeability and capillary pressure parameters, the parameters are continuously interpolated between reference values using the Gibbs free energy (GFE) of each phase at each timestep. Models that are independent of phase labels have many advantages in terms of both numerical stability and physical consistency. The models integrate and unify relevant physical parameters, including hysteresis and trapping number, into one rigorous algorithm with a minimum number of parameters for application in numerical reservoir simulators. The robustness of the new models is demonstrated with simulations of the miscible water-alternating-gas (WAG) process and solvent stimulation to remove condensate and/or water blocks in both conventional and unconventional formations.


Sign in / Sign up

Export Citation Format

Share Document