Fractured-Reservoir Modeling and Interpretation

SPE Journal ◽  
2015 ◽  
Vol 20 (05) ◽  
pp. 983-1004 ◽  
Author(s):  
Fikri Kuchuk ◽  
Denis Biryukov ◽  
Tony Fitzpatrick

Summary Fractures are common features of many well-known reservoirs. Naturally fractured reservoirs (NFRs) consist of fractures in igneous, metamorphic, and sedimentary rocks (matrix). Faults in many naturally fractured carbonate reservoirs often have high-permeability zones and are connected to numerous fractures with varying conductivities. In many NFRs, faults and fractures frequently have discrete distributions rather than connected-fracture networks. Because faulting often creates fractures, faults and fractures should be modeled together. Accurately modeling NFR pressure-transient behavior is important in hydrogeology, the earth sciences, and petroleum engineering, including groundwater contamination to shale gas and oil reservoirs. For more than 50 years, conventional dual-porosity-type models, which do not include any fractures, have been used for modeling fluid flow in NFRs and aquifers. They have been continuously modified to add unphysical matrix-block properties such as matrix skin factor. In general, fractured reservoirs are heterogeneous at different length scales. It is clear that even with millions of gridblocks, numerical models may not be capable of accurately simulating the pressure-transient behavior of continuously and discretely NFRs containing variable-conductivity fractures. The conventional dual-porosity-type models are obviously an oversimplification; their serious limitations for interpreting well-test data from NFRs are discussed in detail. These models do not include wellbore-intersecting fractures, even though they dominate the pressure behavior of NFRs for a considerable length of testing time. Fracture conductivities of unity to infinity dominate transient behavior of both continuously and discretely fractured reservoirs, but again, dual-porosity models do not contain any fractures. Our fractured-reservoir model is capable of treating thousands of fractures that are periodically or arbitrarily distributed with finite- and/or infinite conductivities, different lengths, densities, and orientations. Appropriate inner-boundary conditions are used to account for wellbore-intersecting fractures and direct wellbore contributions to production. Wellbore-storage and skin effects in bounded and unbounded systems are included in the model. Three types of damaged-skin factors that may exist in wellbore-intersecting fracture(s) are specified. With this highly accurate model, the pressure-transient behavior of conventional dual-porosity-type models are investigated, and their limitations and range of applicability are identified. The behavior of the triple-porosity models is also investigated. It is very unlikely that triple-porosity behavior is caused by the local variability of matrix properties at the microscopic level. Rather, it is caused by the spatial variability of conductivity, length, density, and orientation of the fracture distributions. Finally, we have presented an interpretation of a field-buildup-test example from an NFR by use of both conventional dual-porosity models and our fractured-reservoir model. A substantial part of this paper is a review and discussion of the earlier work on NFRs, including the authors’ work.

2015 ◽  
Vol 18 (02) ◽  
pp. 187-204 ◽  
Author(s):  
Fikri Kuchuk ◽  
Denis Biryukov

Summary Fractures are common features in many well-known reservoirs. Naturally fractured reservoirs include fractured igneous, metamorphic, and sedimentary rocks (matrix). Faults in many naturally fractured carbonate reservoirs often have high-permeability zones, and are connected to numerous fractures that have varying conductivities. Furthermore, in many naturally fractured reservoirs, faults and fractures can be discrete (rather than connected-network dual-porosity systems). In this paper, we investigate the pressure-transient behavior of continuously and discretely naturally fractured reservoirs with semianalytical solutions. These fractured reservoirs can contain periodically or arbitrarily distributed finite- and/or infinite-conductivity fractures with different lengths and orientations. Unlike the single-derivative shape of the Warren and Root (1963) model, fractured reservoirs exhibit diverse pressure behaviors as well as more than 10 flow regimes. There are seven important factors that dominate the pressure-transient test as well as flow-regime behaviors of fractured reservoirs: (1) fractures intersect the wellbore parallel to its axis, with a dipping angle of 90° (vertical fractures), including hydraulic fractures; (2) fractures intersect the wellbore with dipping angles from 0° to less than 90°; (3) fractures are in the vicinity of the wellbore; (4) fractures have extremely high or low fracture and fault conductivities; (5) fractures have various sizes and distributions; (6) fractures have high and low matrix block permeabilities; and (7) fractures are damaged (skin zone) as a result of drilling and completion operations and fluids. All flow regimes associated with these factors are shown for a number of continuously and discretely fractured reservoirs with different well and fracture configurations. For a few cases, these flow regimes were compared with those from the field data. We performed history matching of the pressure-transient data generated from our discretely and continuously fractured reservoir models with the Warren and Root (1963) dual-porosity-type models, and it is shown that they yield incorrect reservoir parameters.


2014 ◽  
Vol 17 (01) ◽  
pp. 82-97 ◽  
Author(s):  
Fikri Kuchuk ◽  
Denis Biryukov

Summary Fractures are common features of many well-known reservoirs. Naturally fractured reservoirs contain fractures in igneous, metamorphic, and sedimentary formations. Faults in many naturally fractured carbonate reservoirs often have high-permeability zones, and are connected to many fractures with varying conductivities. Furthermore, in many naturally fractured reservoirs, faults and fractures can be discrete (i.e., not a connected-network fracture system). New semianalytical solutions are used to understand the pressure behavior of naturally fractured reservoirs containing a network of discrete and/or connected (continuous) finite- and infinite-conductivity fractures. We present an extensive literature review of the pressure-transient behavior of fractured reservoirs. First, we show that the Warren and Root (1963) dual-porosity model is a fictitious homogeneous porous medium because it does not contain any fractures. Second, by use of the new solutions, we show that for most naturally fractured reservoirs, the Warren and Root (1963) dual-porosity model is inappropriate and fundamentally incomplete for the interpretation of pressure-transient well tests because it does not capture the behavior of these reservoirs. We examined many field well tests published in the literature. With few exceptions, none of them shows the behavior of the Warren and Root (1963) dual-porosity model. These examples exhibit very diverse pressure behaviors of discretely and continuously fractured reservoirs. Unlike the single derivative shape of the Warren and Root (1963) model, the derivatives of these examples exhibit many different flow regimes depending on fracture distribution and on their intensity and conductivity. We show these flow regimes with our new model for discretely and continuously fractured reservoirs. Most well tests published in the literature do not exhibit the Warren and Root (1963) dual-porosity reservoir-model behavior. If we interpret them by use of this dual-porosity model, then the estimated permeability, skin factor, interporosity flow coefficient (λ), and storativity ratio (ω) will not represent the actual reservoir parameters.


2009 ◽  
Vol 12 (03) ◽  
pp. 380-389 ◽  
Author(s):  
Juan Ernesto Ladron de Guevara-Torres ◽  
Fernando Rodriguez-de la Garza ◽  
Agustin Galindo-Nava

Summary The gravity-drainage and oil-reinfiltration processes that occur in the gas-cap zone of naturally fractured reservoirs (NFRs) are studied through single porosity refined grid simulations. A stack of initially oil-saturated matrix blocks in the presence of connate water surrounded by gas-saturated fractures is considered; gas is provided at the top of the stack at a constant pressure under gravity-capillary dominated flow conditions. An in-house reservoir simulator, SIMPUMA-FRAC, and two other commercial simulators were used to run the numerical experiments; the three simulators gave basically the same results. Gravity-drainage and oil-reinfiltration rates, along with average fluid saturations, were computed in the stack of matrix blocks through time. Pseudofunctions for oil reinfiltration and gravity drainage were developed and considered in a revised formulation of the dual-porosity flow equations used in the fractured reservoir simulation. The modified dual-porosity equations were implemented in SIMPUMA-FRAC (Galindo-Nava 1998; Galindo-Nava et al. 1998), and solutions were verified with good results against those obtained from the equivalent single porosity refined grid simulations. The same simulations--considering gravity drainage and oil reinfiltration processes--were attempted to run in the two other commercial simulators, in their dual-porosity mode and using available options. Results obtained were different among them and significantly different from those obtained from SIMPUMA-FRAC. Introduction One of the most important aspects in the numerical simulation of fractured reservoirs is the description of the processes that occur during the rock-matrix/fracture fluid exchange and the connection with the fractured network. This description was initially done in a simplified manner and therefore incomplete (Gilman and Kazemi 1988; Saidi and Sakthikumar 1993). Experiments and theoretical and numerical studies (Saidi and Sakthikumar 1993; Horie et al. 1998; Tan and Firoozabadi 1990; Coats 1989) have allowed to understand that there are mechanisms and processes, such as oil reinfiltritation or oil imbibition and capillary continuity between matrix blocks, that were not taken into account with sufficient detail in the original dual-porosity formulations to model them properly and that modify significantly the oil-production forecast and the ultimate recovery in an NFR. The main idea of this paper is to study in further detail the oil reinfiltration process that occurs in the gas invaded zone (gas cap zone) in an NFR and to evaluate its modeling to implement it in a dual-porosity numerical simulator.


1969 ◽  
Vol 9 (04) ◽  
pp. 451-462 ◽  
Author(s):  
H. Kazemi

Abstract An ideal theoretical model of a naturally fractured reservoir with a uniform fracture distribution, motivated by an earlier model by Warren and Root, has been developed. This model consists of a finite circular reservoir with a centrally located well and two distinct porous regions, referred to as matrix and fracture, respectively. The matrix has high storage, but low flow capacity; the fracture has low storage, but high flow capacity. The flow in the entire reservoir is unsteady state. The results of this study are compared with the results of the earlier models, and it has been concluded that major conclusions of Warren and Root are quite substantial. Furthermore, an attempt has been made to study critically other analytical methods reported in the literature. In general, it may be concluded that the analysis of a naturally fractured reservoir from pressure transient data relies considerably on the degree and the type of heterogeneity of the system; the testing procedure and test facilities are sometimes as important. Nevertheless, under favorable conditions, one should be able to calculate in-situ characteristics of the matrix-fracture system, such as pore-volume ratio, over-all capacity of the formation, total storage capacity of the porous matrix, and some measure of matrix permeability. Introduction The analysis of flow and buildup tests for obtaining in-situ characteristics of oil and gas reservoirs has received considerable attention in the past decade. Most of the available techniques result in reliable conclusions in macroscopically homogeneous reservoirs or in the homogeneous reservoirs with only certain types of induced and/or inherent heterogeneity (such as wellbore damage, etc.).


2021 ◽  
pp. petgeo2020-042
Author(s):  
D. Egya ◽  
P. W. M. Corbett ◽  
S. Geiger ◽  
J. P. Norgard ◽  
S. Hegndal-Andersen

This paper successfully applied the geoengineering workflow for integrated well-test analysis to characterise fluid flow in a newly discovered fractured reservoir in the Barents Sea. A reservoir model containing fractures and matrix was built and calibrated using this workflow to match complex pressure transients measured in the field. We outline different geological scenarios that could potentially reproduce the pressure response observed in the field, highlighting the challenge of non-uniqueness when analysing well-test data. However, integrating other field data into the analysis allowed us to narrow the range of uncertainty, enabling the most plausible geological scenario to be taken forward for more detailed reservoir characterisation and history matching. The results provide new insights into the reservoir geology and the key flow processes that generate the pressure response observed in the field. This paper demonstrates that the geoengineering workflow used here can be applied to better characterise naturally fractured reservoirs. We also provide reference solutions for interpreting well-tests in fractured reservoirs where troughs in the pressure derivative are recognisable in the data.


2009 ◽  
Vol 12 (02) ◽  
pp. 189-199 ◽  
Author(s):  
Adetayo S. Balogun ◽  
Hossein Kazemi ◽  
Erdal Ozkan ◽  
Mohammed Al-kobaisi ◽  
Benjamin Ramirez

Summary Accurate calculation of multiphase fluid transfer between the fracture and matrix in naturally fractured reservoirs is a very crucial issue. In this paper, we will present the viability of the use of a simple transfer function to accurately account for fluid exchange resulting from capillary and gravity forces between fracture and matrix in dual-porosity and dual-permeability numerical models. With this approach, fracture- and matrix-flow calculations can be decoupled and solved sequentially, improving the speed and ease of computation. In fact, the transfer-function equations can be used easily to calculate the expected oil recovery from a matrix block of any dimension without the use of a simulator or oil-recovery correlations. The study was accomplished by conducting a 3-D fine-grid simulation of a typical matrix block and comparing the results with those obtained through the use of a single-node simple transfer function for a water-oil system. This study was similar to a previous study (Alkandari 2002) we had conducted for a 1D gas-oil system. The transfer functions of this paper are specifically for the sugar-cube idealization of a matrix block, which can be extended to simulation of a match-stick idealization in reservoir modeling. The basic data required are: matrix capillary-pressure curves, densities of the flowing fluids, and matrix block dimensions. Introduction Naturally fractured reservoirs contain a significant amount of the known petroleum hydrocarbons worldwide and, hence, are an important source of energy fuels. However, the oil recovery from these reservoirs has been rather low. For example, the Circle Ridge Field in Wind River Reservation, Wyoming, has been producing for 50 years, but the oil recovery is less than 15% (Golder Associates 2004). This low level of oil recovery points to the need for accurate reservoir characterization, realistic geological modeling, and accurate flow simulation of naturally fractured reservoirs to determine the locations of bypassed oil. Reservoir simulation is the most practical method of studying flow problems in porous media when dealing with heterogeneity and the simultaneous flow of different fluids. In modeling fractured systems, a dual-porosity or dual-permeability concept typically is used to idealize the reservoir on the global scale. In the dual-porosity concept, fluids transfer between the matrix and fractures in the grid-cells while flowing through the fracture network to the wellbore. Furthermore, the bulk of the fluids are stored in the matrix. On the other hand, in the dual-permeability concept, fluids flow through the fracture network and between matrix blocks. In both the dual-porosity and dual-permeability formulations, the fractures and matrices are linked by transfer functions. The transfer functions account for fluid exchanges between both media. To understand the details of this fluid exchange, an elaborate method is used in this study to model flow in a single matrix block with fractures as boundaries. Our goal is to develop a technique to produce accurate results for use in large-scale modeling work.


Sign in / Sign up

Export Citation Format

Share Document