Case Study for Real Time Stick/Slip Mitigation to Improve Drilling Performance

2016 ◽  
Author(s):  
Stephen K. Vogel ◽  
Andrew P. Creegan
2021 ◽  
Author(s):  
Gilles Pelfrene ◽  
Bruno Cuilier ◽  
Dhaker Ezzeddine ◽  
Alfazazi Dourfaye ◽  
Dimo Dimov ◽  
...  

AbstractDownhole vibration measurements are used real-time and post-run to monitor drilling dynamics. Real-time monitoring tools are applied to facilitate immediate corrective actions but their deployment adds operational constraints and costs. This paper describes a new high-capability vibration recorder embedded in the drill bit as a standard component. The analysis of two case studies in the Middle East shows how memory devices available at a reduced cost and on every run are a valuable option for many appraisal or development wells.Developing a fleet of reliable downhole recording tools typically takes years and involves teams of experts in various fields. The paper describes the strategy followed by a drill bit manufacturer to develop and deploy a compact, high capability and cost-effective vibration recorder to provide continuous readings of accelerations, rotation speed (RPM) and temperature at 100Hz and over 250 hours. Sensors and batteries have been packaged to fit into the drill bit shank or elsewhere in the bottom hole assembly (BHA). The recording starts automatically and thus removes the need for onsite personnel. The paper also presents proprietary data analytics software used to retrieve, process and synchronize the recorded data with other available data (mud logs, Measurement/Logging While Drilling logs) and to present critical drilling events.In the first application, the 8 ½-in. bit drilled a 20,000 ft horizontal drain. More than 250 hr of data were recorded showing intense levels of stick-slip. During the entire run, the drilling team deployed several strategies to mitigate stick-slip, including the use of two surface-based stick-slip mitigation systems. The analysis shows that these systems are sometimes unsuccessful in mitigating stick-slip and are difficult to calibrate. It is demonstrated how the vibration recorder may contribute to fine tuning these mitigation efforts through optimization of their settings. In the second application, the vibration recorder was mounted on a 12 1/4-in. bit used to drill 5,000 ft through cement and formation. The analysis shows the motor was subjected to erratic RPM cycles, leading to frequent stalls and acceleration peaks during the run. It is shown how motor performance then decreased consistently during the last hundreds of feet of the section and how this affected rate of penetration (ROP).Deployment of a vibration recorder over the entire drill bit manufacturer's fleet allows continuous monitoring of critical drilling issues and malfunctions related to a variety of drilling equipment that enables the operator to improve drilling performance. The bit-sensor package makes high frequency data systematically available at a reduced cost for every drilling application.


2018 ◽  
Author(s):  
Mojtaba Shahri ◽  
Timothy Wilson ◽  
Taylor Thetford ◽  
Brian Nelson ◽  
Michael Behounek ◽  
...  

2021 ◽  
Author(s):  
Singh Anurag Yadav ◽  
Imran Muhammad Chohan

Abstract In oil and gas drilling, consistency of performance delivery heavily depends upon rig capability and its ability to maintain performance assurance through its execution cycle. It's not an uncommon occurrence that a rig is found with an underperforming top drive, one such scenario was observed in an in-fill oil well drilling project. This project was essentially drilling horizontal wells with bottom hole assemblies which had primary drive mechanism as a top drive. The rig in question was struggling to provide not only the requisite RPM but also not been able to deliver consistent torque needed to drill the well. This study analyzes how severe rig limitations were overcome through an optimization plan in which most optimal BHA was designed and drilling practices were customized for safe and successful execution of wells. In order to understand root cause of the challenge, an offset well analysis was conducted, it identified that high torque was mostly generated while drilling through inter-bedded formations which typically caused top drive to stall. In addition, multiple tool failures were encountered due to the high stick slip which rig couldn't mitigate due to the low RPM yield of the top drive. To manage the rpm and torque limitations, a motorized RSS BHA was designed as a solution. Further, based on micro-stall events of motor only BHA's across the inter-bedded formations in the field, a stick slip management tool was placed below the motor so that a potential twist-off and/or motor damages can be avoided. Also, different bottom hole assembly's drilling dynamics response were analyzed to come up with optimal stabilization and connection practices to avoid back reaming while trip outs. This paper would showcase actual results which highlight improvements achieved in stagnant drilling performance of the project. The analysis would demonstrate how multiple wells were drilled in one run following the risk assessment developed from the optimization study and subsequent real time monitoring of mitigating actions while execution. The comprehensive bottoms-up drilling optimization approach helped save 4 planned days for each well, this really paves way to pursue applied-engineering solutions to achieve step change in drilling performances, especially on rigs which are severely limited either due to capacity or malperformance issues. The bottoms up approach taken to understand the drilling challenges followed by a methodical approach to address each of the challenges demonstrate importance of effective pre-job planning. Learnings from this study can be adopted as a template to mitigate similar drilling challenges.


Author(s):  
Y. D. Mulia

For S-15 and S-14 wells at South S Field, drilling of the 12-1/4” hole section became the longest tangent hole section interval of both wells. There were several challenges identified where hole problems can occur. The hole problems often occur in the unconsolidated sand layers and porous limestone formation sections of the hole during tripping in/out operations. Most of the hole problems are closely related to the design of the Bottom Hole Assembly (BHA). In many instances, hole problems resulted in significant additional drilling time. As an effort to resolve this issue, a new BHA setup was then designed to enhance the BHA drilling performance and eventually eliminate hole problems while drilling. The basic idea of the enhanced BHA is to provide more annulus clearance and limber BHA. The purpose is to reduce the Equivalent Circulating Density (ECD,) less contact area with formation, and reduce packoff risk while drilling through an unconsolidated section of the rocks. Engineering simulations were conducted to ensure that the enhanced BHA were able to deliver a good drilling performance. As a results, improved drilling performance can be seen on S-14 well which applied the enhanced BHA design. The enhanced BHA was able to drill the 12-1/4” tangent hole section to total depth (TD) with certain drilling parameter. Hole problems were no longer an issue during tripping out/in operation. This improvement led to significant rig time and cost savings of intermediate hole section drilling compared to S-15 well. The new enhanced BHA design has become one of the company’s benchmarks for drilling directional wells in South S Field.


1997 ◽  
Vol 36 (8-9) ◽  
pp. 331-336 ◽  
Author(s):  
Gabriela Weinreich ◽  
Wolfgang Schilling ◽  
Ane Birkely ◽  
Tallak Moland

This paper presents results from an application of a newly developed simulation tool for pollution based real time control (PBRTC) of urban drainage systems. The Oslo interceptor tunnel is used as a case study. The paper focuses on the reduction of total phosphorus Ptot and ammonia-nitrogen NH4-N overflow loads into the receiving waters by means of optimized operation of the tunnel system. With PBRTC the total reduction of the Ptot load is 48% and of the NH4-N load 51%. Compared to the volume based RTC scenario the reductions are 11% and 15%, respectively. These further reductions could be achieved with a relatively simple extension of the operation strategy.


Sign in / Sign up

Export Citation Format

Share Document