drill bit
Recently Published Documents


TOTAL DOCUMENTS

887
(FIVE YEARS 254)

H-INDEX

22
(FIVE YEARS 5)

Geofluids ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-13
Author(s):  
Cheng Yang ◽  
Jianliang Jiang ◽  
Bo Qi ◽  
Guoqing Cui ◽  
Liyong Zhang ◽  
...  

A swirling drill bit designed with an integrated vane swirler was developed to improve reverse circulation in down-the-hole hammer drilling. Its entrainment effect and influential factors were investigated by CFD simulation and experimental tests. The numerical results exhibit reasonable agreement with the experimental data, with a maximum error of 13.68%. In addition, the structural parameters of the swirler were shown to have an important effect on the reverse circulation performance of the drill bit, including the helical angle and number of spiral blades, swirler outlet area, and the flushing nozzles. The optimal parameters for the swirling drill bit without flushing nozzles include a helical angle of 60°, four spiral blades, and the area ratio of 2, while it is about 30°, 3, and 3 for the drill bit with flushing nozzles. Moreover, the entrainment ratio of the drill bit without flushing nozzles can be improved by nearly two times compared with one with flushing nozzles under the same conditions.


Author(s):  
Bhagyashri Dilip Chaudhari

Abstract: In drilling, a cylindrical hole is produced in workpiece, removing the material inside the workpiece. The cutting tool used in drilling operation is called ‘Twist Drill’; it rotates and allows the material to be removed from the workpiece in the form of chips and thus drill the hole. Cutting fluids or coolants are used to perform this operation smoothly. The coating on the drill bits helps to reduce friction in the cut and the heat buildup in the drill bit. Coating also helps in protecting against corrosion. The present work focuses on the features of uncoated High Speed Steel (HSS) Twist Drill bit and Titanium Nitride (TiN) and Titanium Aluminium Nitride (TiAlN) coated on HSS Drills. The workpiece material was Mild Steel and the drilling operation was done using normal machining condition i.e. in presence of coolant. The cutting parameters used are cutting speed (35.5 m / min), spindle speed (1500 rpm), feed rate (0.2 mm / rev.), depth of cut (10 mm). These parameters were kept constant. Temperatures were measured with the help of thermal imaging camera and with the help of ANSYS software thermal analysis were done. Experimental results showed that the average rise in temperature of uncoated HSS tool was higher as compared to TiN coated and TiAlN coated HSS tools. TiAlN coated drills showed the least average rise in temperature. Keywords: High Speed Steel (HSS) Drill, TiN and TiAlN Coated HSS Twist Drill, Mild Steel (MS), Thermal Analysis, ANSYS Software.


Author(s):  
A. O. Shigin ◽  
◽  
D. A. Boreyko ◽  
N. D. Tskhadaya ◽  
D. Yu. Serikov ◽  
...  

Currently, roller bits are widely used in rock drilling, which are devices with rotating rollers armed with teeth. There are various approaches in assessing the effectiveness of rock destruction by a roller drilling tool, which can be conditionally divided into structural and technological ones. In addition, all the efficiency factors of the roller bit are related to the correspondence of its characteristics and the drilling process to the properties of the rock it destroys. The article analyzes the operating conditions of the roller bit during drilling of rocks of various hardness. On the example of operation of a two-screw drill bit, the process of power interaction of the toothed weapon with rock is considered depending on various factors, such as the shape and pitch of the teeth, angle of inclination, sharpness of the tooth and others. It is shown that kinematic characteristics of interaction of toothed armament with drilled rock have a significant influence on efficiency of process of face destruction. Keywords: drill bit; drilling tool; destruction; drilling; roller cutter; rock.


2021 ◽  
pp. 152808372110620
Author(s):  
AR Ngah ◽  
Suhad D Salman ◽  
Z Leman ◽  
SM Sapuan ◽  
MFM Alkbir ◽  
...  

Drilling is a secondary material removal and usually carried out to facilitate fastening of parts together. Drilling of composite materials is not usually a problem-free process. Issues related to delamination composite laminates need to be addressed because it introduces the stress concentration point on the composite. This study focussed on the influence of process parameters such as spindle speed, feed rate, type of drill bits and geometry on the extend of delamination experienced by the composite during the drilling process of kenaf-glass fibre-reinforced unsaturated polyester composite, and the delamination measurements were taken under a microscope. Taguchi methods and analysis of variance were employed to find the optimal parameters. From the results, the most significant parameter was the feed rate. The minimum delamination was achieved when the feed rate was 0.05 mm/rev and spindle speed was 700r/min using both types of drill bits. The quality of the drill hole using the twist drill bit has been proven to be better than the brad drill bit.


2021 ◽  
pp. 60-63
Author(s):  
B. N. Baratov ◽  
F. Ya. Umarov ◽  
Zh. B. Toshov

Author(s):  
Jialin Tian ◽  
Zhe Deng ◽  
Hongzhi He

The rock breaking efficiency of drill bit is deeply affected with the increase of drilling depth. The increase length of the drill string leads to torsional stiffness decrease, which may even result in the stick-slip phenomena. In order to improve the rock breaking efficiency and reduce the stick-slip, this paper proposed a longitudinal–torsional coupled impactor. The internal working mechanism was carried out by theoretical analysis and experimental test. Moreover, comparing the computation and test results, the following conclusions can be obtained and verified. This innovative design can provide appropriate longitudinal-torsional coupled impact to drill bit during drilling process, and the movement of the hammer and pendulum is periodic. With the increasing flow rate of drilling fluid, this tool can generate corresponding larger impact force, torque and higher impact frequency. The theoretical analysis results are consistent with the experimental test results, which verify the reliability of the innovative design and the accuracy of theoretical analysis. This paper can provide reference for the innovative design of downhole drilling tool, the development of drilling dynamics and the improvement of drilling efficiency especially in the conditions of complex and ultra-deep wells.


2021 ◽  
Vol 13 (2) ◽  
pp. 116-123
Author(s):  
Yegireddi Shireesha ◽  
◽  
Nandipati Govind ◽  
◽  

Drill on different layered composite causes to force the layers ahead of it, creating unacceptable delamination on the leaving side. The current work describes the influence of different process parameters like spindle speed, feed, diameter of drill bit and addition of filler material on delamination damage on carbon and jute hybrid fiber composites during drilling operation. The experimental output for delamination is optimized by RSM-Response Surface Methodology and ANN-Artificial Neural Network Model. The experimental prediction model was established by considering DOE (design of experiments) of three levels performed with drilling operation by varying above said process parameters The optimum values for minimized delamination damage conditions found to be at (J-C-C-J) +5g of filler (fly-ash) composite. This is drilled with 8.5mm diameter drill bit with a feed of 0.08mm/rev at 875rpm speed. From the theoretical results it is recognized that cutting-speed and filler-material have much influencing factors on responses (delamination), and their individual contribution in an order of 47.25% and 47.32% respectively. By using Box-Behnken design RSM model is developed, with a feed-forward back-propagation method to develop the predictive ANN model which consists of 15 neurons in its hidden layer along with ANN Model. Here ANN Results (R2=0.99and RMSE=1.99) showed that the developed model is performing better to predict content of delamination when compare to RSM results (R2=0.97and RMSE=2.24).


Geophysics ◽  
2021 ◽  
pp. 1-56
Author(s):  
Flavio Poletto ◽  
Alex Goertz ◽  
Cinzia Bellezza ◽  
Endre Vange Bergfjord ◽  
Piero Corubolo ◽  
...  

Seismic while drilling (SWD) by drill-bit source has been successfully used in the past decades and is proven using variable configurations in onshore applications. The method creates a reverse vertical seismic profile (RVSP) dataset from surface sensors deployed as arrays in the proximity of the monitored wells. The typical application makes use of rig-pilot reference (pilot) sensors at the top of the drill-string and also downhole. This approach provides while-drilling checkshots as well as multioffset RVSP for 2-D and 3-D imaging around the well and prediction ahead of the bit. For logistical (sensor deployment) and cost (rig time related to technical installation) reasons the conventional drill-bit SWD application is typically much easier onshore than offshore. We present a novel approach that uses a network of passive-monitoring sea bottom nodes pre-deployed for microseismic monitoring to simultaneously and effectively record offshore SWD data. We study the results of a pilot test where we passively monitored the drilling of an appraisal well at the Wisting discovery in the Barents Sea with an ocean-bottom cable deployed temporarily around the drilling rig. The continuous passive recording of vibration signals emitted during the drilling of the well provides the SWD data set, which is treated as a reverse vertical seismic profile. The study is performed without rig-pilot signal. The results are compared with legacy data and demonstrate the effectiveness of the approach and point to future applications for real-time monitoring of the drilling progress, both in terms of geosteering the drill bit and predicting formation properties ahead of the bit by reflection imaging.


2021 ◽  
Author(s):  
Alexis Koulidis ◽  
Fahd Mohamed ◽  
Shehab Ahmed

Abstract Challenging drilling applications and low oil prices have created a new emphasis on innovation in the industry. This research investigates the value of drill bit based force sensing at the rock-cutter interface. For this purpose, a laboratory-based mini-rig has been built in order to recreate a scaled drilling process. The work aims to build a better understanding of the collected force and torque data despite the semi-continuous drilling process. This data is then used to estimate the formation strength. A scaled drill bit with two cutters was designed with sensors integrated into the drill bit cutter, drill string and the mini-rig structure. The mini-rig design allowed the accurate control of depth of cut by utilizing a comprehensive data acquisition and control system during the experiments. Initially, fifty-five samples were prepared with various water/gypsum ratios for a uniaxial compression test, scratch test, and for testing in the mini-rig. Prior to the mini-rig experiments, the results of the uniaxial compression and scratch tests were used as a benchmark to extract rock properties and the state of stress behavior. The experiments under atmospheric conditions revealed that the mini-rig could accurately estimate formation strength from a few rotations. The force data at the bit-rock interface was correlated with the torque measurements, and the results indicate that the tangential force has similar trends and relatively similar values. The groove created by the drill bit's rotating trajectory has a 14.45 cm circumference. This allows for a significant amount of data to be captured from a single rotation. The circular cutter geometry's influence is crucial for a continuous process since the active cutting area is continuously changing due to the pre-cut groove. The performed depth of cuts ranged from 0.1 to 1 mm in the same groove, and thus the active cutting area can be accurately calculated in real-time while conducting the experiments. Tangential and normal force data from the scratch test was analyzed in order to provide insights for correlation with the mini-rig data. The analysis shows that both tests give similar trends to the force measurements from the mini-rig. Moreover, the benchmark value of formation strength that was obtained from the uniaxial compression test was also in the same range. This illustrates the potential viability of drill bit based formation strength measurement due to the similarity between mini-rig test results and those using more classical testing practices. The experimental setup can provide a continuous cutting process that allows an accurate estimation of formation strength during a semi-continuous drilling operation with analogous application in the field. This can lead to an in-depth understanding of drilled formation properties while drilling and possibly assist in evaluating cutter wear state in-situ.


2021 ◽  
Author(s):  
Guodong David Zhan ◽  
Bodong Li ◽  
Timothy Eric Moellendick ◽  
Duanwei He ◽  
Jianhui Xu

Abstract PDC drill bits are the primary drilling tools for oil and gas in most of formations. In a PDC drill bit, PDC cutters are key cutting components to engage with these formations. However, there is often a big challenge for today's PDC drill bits when drilling very hard and abrasive formation. The main weakness in the PDC cutter is due to the unavoidable use of metallic catalyst which is used to bond the diamond grains in the PDC cutters. The thermal expansion of the metallic catalysts resulting from high frictional heat at the cutter/rock interface during drilling operation is higher than that of diamond grains, causing the thermal stress between the metallic catalyst and diamond grain which can break the PDC cutter. Therefore, development of catalyst-free PDC cutters would be a game-changing technology for drill bit by delivering significant increase in performance, durability, and drilling economics. In this study, an innovative ultra-high pressure and ultra-high temperature technology was developed with ultra-high pressures up to 35 GPa, much higher than current PDC cutter technology. We report a new type of catalyst-free PDC cutting material, synthesized under one of conditions using ultra-high pressure of 16 GPa. The new material breaks all single-crystal-diamond indenters in Vickers hardness testing which sets a new world record as the hardest diamond material as of today. Also, the material shows the highest thermal stability in the family of diamonds in air at 1,200°C, which is about 600 °C higher than current PDC cutters. As a consequence of these superior properties, this new material exhibited industry-recorded wear resistance, which is four times of that of current PDC cutters. All of these achievements demonstrated a breakthrough in PDC cutter technology development and presented a feasibility for the goal of "One-Run-To-TD" game-changing drilling technology.


Sign in / Sign up

Export Citation Format

Share Document