Transient Pressure Analysis of Horizontal Well with Slanted Hydraulic Fractures and Drainage Volume Characterization Using Fast Marching Method

2016 ◽  
Author(s):  
Jichao Han ◽  
Changdong Yang ◽  
Jixiang Huang
SPE Journal ◽  
2014 ◽  
Vol 20 (02) ◽  
pp. 347-359 ◽  
Author(s):  
Jiang Xie ◽  
Changdong Yang ◽  
Neha Gupta ◽  
Michael J. King ◽  
Akhil Datta-Gupta

Summary We present a novel approach to calculate drainage volume and well performance in shale gas reservoirs by use of the fast marching method (FMM) combined with a geometric pressure approximation. Our approach can fully account for complex fracture-network geometries associated with multistage hydraulic fractures and their impact on the well pressure and rates. The major advantages of our proposed approach are its simplicity, intuitive appeal, and computational efficiency. For example, we can compute and visualize the time evolution of the well-drainage volume for multimillion-cell geologic models in seconds without resorting to reservoir simulation. A geometric approximation of the drainage volume is then used to compute the well rates and the reservoir pressure. The speed and versatility of our proposed approach make it ideally suited for parameter estimation by means of the inverse modeling of shale-gas performance data. We use experimental design to perform the sensitivity analysis to identify the “heavy hitters” and a genetic algorithm (GA) to calibrate the relevant fracture and matrix parameters in shale-gas reservoirs by history matching of production data. In addition to the production data, microseismic information is used to help us constrain the fracture extent and orientation and to estimate the stimulated reservoir volume (SRV). The proposed approach is applied to a fractured shale-gas well. The results clearly show reduced ranges in the estimated fracture parameters and SRV, leading to improved forecasting and reserves estimation.


SPE Journal ◽  
2016 ◽  
Vol 21 (06) ◽  
pp. 2276-2288 ◽  
Author(s):  
Yusuke Fujita ◽  
Akhil Datta-Gupta ◽  
Michael J. King

Summary Modeling of fluid flow in unconventional reservoirs requires accurate characterization of complex flow mechanisms because of the interactions between reservoir rock, microfractures, and hydraulic fractures. The pore-size distribution in shale and tight sand reservoirs typically ranges from nanometers to micrometers, resulting in ultralow permeabilities. In such extremely low-permeability reservoirs, desorption and diffusive processes play important roles in addition to heterogeneity-driven convective flows. For modeling shale and tight oil and gas reservoirs, we can compute the well-drainage volume efficiently with a fast marching method (FMM) and by introducing the concept of “diffusive time of flight” (DTOF). Our proposed simulation approach consists of two decoupled steps—drainage-volume calculation and numerical simulation with DTOF as a spatial coordinate. We first calculate the reservoir drainage volume and the DTOF with the FMM, and then the numerical simulation is conducted along the 1D DTOF coordinate. The approach is analogous to streamline modeling whereby a multidimensional simulation is decoupled to a series of 1D simulations resulting in substantial savings in computation time for high-resolution simulation. However, instead of a “convective time of flight” (CTOF), a DTOF is introduced to model the pressure-front propagation. For modeling physical processes, we propose triple continua whereby the reservoir is divided into three different domains: microscale pores (hydraulic fractures and microfractures), nanoscale pores (nanoporous networks), and organic matter. The hydraulic fractures/microfractures primarily contribute to the well production, and are affected by rock compaction. The nanoporous networks contain adsorbed gas molecules, and gas flows into fractures by convection and Knudsen diffusion processes. The organic matter acts as the source of gas. Our simulation approach enables high-resolution flow characterization of unconventional reservoirs because of its efficiency and versatility. We demonstrate the power and utility of our approach with synthetic and field examples.


2015 ◽  
Vol 10 (1) ◽  
pp. 23
Author(s):  
Yu Long Zhao ◽  
Lie Hui Zhang ◽  
Jin Zhou Zhao ◽  
Shu Yong Hu ◽  
Bo Ning Zhang

2019 ◽  
Vol 180 ◽  
pp. 631-642 ◽  
Author(s):  
Hongyang Chu ◽  
Xinwei Liao ◽  
Zhiming Chen ◽  
Xiaoliang Zhao ◽  
Wenyuan Liu ◽  
...  

Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-20 ◽  
Author(s):  
Guangdong Wang ◽  
Ailin Jia ◽  
Yunsheng Wei ◽  
Cong Xiao

Shale gas reservoirs (SGR) have been a central supply of carbon hydrogen energy consumption and hence widely produced with the assistance of advanced hydraulic fracturing technologies. On the one hand, due to the inherent ultralow permeability and porosity, there is stress sensitivity in the reservoirs generally. On the other hand, hydraulic fractures and the stimulated reservoir volume (SRV) generated by the massive hydraulic fracturing operation have contrast properties with the original reservoirs. These two phenomena pose huge challenges in SGR transient pressure analysis. Limited works have been done to take the stress sensitivity and spatially varying permeability of the SRV zone into consideration simultaneously. This paper first idealizes the SGR to be four linear composite regions. What is more, the SRV zone is further divided into subsections on the basis of nonuniform distribution of proppant within the SRV zone which easily yields spatially varying permeability away from the main hydraulic fracture. By means of perturbation transformation and Laplace transformation, an analytical multilinear flow model (MLFM) is obtained and validated as a comparison with the previous models. The flow regimes are identified, and the sensitivity analysis of critical parameters is conducted to further understand the transient pressure behaviors. The research results provided by this work are of significance for an effective recovery of SGR resources.


Sign in / Sign up

Export Citation Format

Share Document