Integration of Shale-Gas-Production Data and Microseismic for Fracture and Reservoir Properties With the Fast Marching Method

SPE Journal ◽  
2014 ◽  
Vol 20 (02) ◽  
pp. 347-359 ◽  
Author(s):  
Jiang Xie ◽  
Changdong Yang ◽  
Neha Gupta ◽  
Michael J. King ◽  
Akhil Datta-Gupta

Summary We present a novel approach to calculate drainage volume and well performance in shale gas reservoirs by use of the fast marching method (FMM) combined with a geometric pressure approximation. Our approach can fully account for complex fracture-network geometries associated with multistage hydraulic fractures and their impact on the well pressure and rates. The major advantages of our proposed approach are its simplicity, intuitive appeal, and computational efficiency. For example, we can compute and visualize the time evolution of the well-drainage volume for multimillion-cell geologic models in seconds without resorting to reservoir simulation. A geometric approximation of the drainage volume is then used to compute the well rates and the reservoir pressure. The speed and versatility of our proposed approach make it ideally suited for parameter estimation by means of the inverse modeling of shale-gas performance data. We use experimental design to perform the sensitivity analysis to identify the “heavy hitters” and a genetic algorithm (GA) to calibrate the relevant fracture and matrix parameters in shale-gas reservoirs by history matching of production data. In addition to the production data, microseismic information is used to help us constrain the fracture extent and orientation and to estimate the stimulated reservoir volume (SRV). The proposed approach is applied to a fractured shale-gas well. The results clearly show reduced ranges in the estimated fracture parameters and SRV, leading to improved forecasting and reserves estimation.

Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1634 ◽  
Author(s):  
Juhyun Kim ◽  
Youngjin Seo ◽  
Jihoon Wang ◽  
Youngsoo Lee

Most shale gas reservoirs have extremely low permeability. Predicting their fluid transport characteristics is extremely difficult due to complex flow mechanisms between hydraulic fractures and the adjacent rock matrix. Recently, studies adopting the dynamic modeling approach have been proposed to investigate the shape of the flow regime between induced and natural fractures. In this study, a production history matching was performed on a shale gas reservoir in Canada’s Horn River basin. Hypocenters and densities of the microseismic signals were used to identify the hydraulic fracture distributions and the stimulated reservoir volume. In addition, the fracture width decreased because of fluid pressure reduction during production, which was integrated with the dynamic permeability change of the hydraulic fractures. We also incorporated the geometric change of hydraulic fractures to the 3D reservoir simulation model and established a new shale gas modeling procedure. Results demonstrate that the accuracy of the predictions for shale gas flow improved. We believe that this technique will enrich the community’s understanding of fluid flows in shale gas reservoirs.


2021 ◽  
Author(s):  
Hamidreza Hamdi ◽  
Hamid Behmanesh ◽  
Christopher R. Clarkson

Abstract Hydraulic fracture/reservoir properties and fluid-in-place can be quantified by using rate-transient analysis (RTA) techniques applied to flow rates/pressures gathered from multi-fractured horizontal wells (MFHWs) completed in unconventional reservoirs. These methods are commonly developed for the analysis of production data from single wells without considering communication with nearby wells. However, in practice, wells drilled from the same pad can be in strong hydraulic communication with each other. This study aims to develop the theoretical basis for analyzing production data from communicating MFHWs completed in single-phase shale gas reservoirs. A simple and practical semi-analytical method is developed to quantify the communication between wells drilled from the same pad by analyzing online production data from the individual wells. This method is based on the communicating tanks model and employs the concepts of macroscopic material balance and the succession of pseudo-steady states. A set of nonlinear ordinary differential equations (ODEs) are generated and solved simultaneously using the efficient Adams-Bashforth-Moulton algorithm. The accuracy of the solutions is verified against robust numerical simulation. In the first example provided, a MFHW well-pair is presented where the wells are communicating through primary hydraulic fractures with different communication strengths. In the subsequent examples, the method is extended to consider production data from a three-well and a six-well pad with wine-rack-style completions. The developed model is flexible enough to account for asynchronous wells that are producing from distinct reservoir blocks with different fracture/rock properties. For all the studied cases, the semi-analytical method closely reproduces the results of fully numerical simulation. The results demonstrate that, in some cases, when new wells start to produce, the production rates of existing wells can drop significantly. The amount of productivity loss is a direct function of the communication strengths between the wells. The new method can accurately quantify the communication strength between wells through transmissibility multipliers between the hydraulic fractures that are adjusted to match individual well production data. In this study, a new simple and efficient semi-analytical method is presented that can be used to analyze online production data from multiple wells drilled from a pad simultaneously with minimal computation time. The main advantage of the developed method is its scalability, where additional wells can be added to the system very easily.


Author(s):  
Jaejun Kim ◽  
Joe M. Kang ◽  
Yongjun Park ◽  
Seojin Lim ◽  
Changhyup Park ◽  
...  

This paper evaluates the estimated ultimate recovery for 10-year operation at a shale gas reservoir, implementing FMM (Fast Marching Method) as a surrogate model of full-scale numerical simulation and Monte Carlo simulation as a tool for accessing the uncertainty of FMM-based proxy parameters. Sensitivity analysis shows the significant properties affecting the gas recovery that are enhanced permeability, matrix permeability, and porosity in sequence. Using the statistical distributions of these parameters, this study determines P10, P50, and P90 of the 10-year cumulative gas production and compares them with the values from full-physics simulations. The computing time based on the proxy model is much smaller than that of the full-scale simulations while the prediction accuracy is acceptable. FMM can forecast the production profiles reliably without time-consuming simulation and the integration of Monte-Carlo simulation is able to evaluate the uncertainty of gas recovery, quantitatively.


SPE Journal ◽  
2014 ◽  
Vol 19 (05) ◽  
pp. 845-857 ◽  
Author(s):  
Yu-Shu Wu ◽  
Jianfang Li ◽  
Didier-Yu Ding ◽  
Cong Wang ◽  
Yuan Di

Summary Unconventional gas resources from tight-sand and shale gas reservoirs have received great attention in the past decade around the world because of their large reserves and technical advances in developing these resources. As a result of improved horizontal-drilling and hydraulic-fracturing technologies, progress is being made toward commercial gas production from such reservoirs, as demonstrated in the US. However, understandings and technologies needed for the effective development of unconventional reservoirs are far behind the industry needs (e.g., gas-recovery rates from those unconventional resources remain very low). There are some efforts in the literature on how to model gas flow in shale gas reservoirs by use of various approaches—from modified commercial simulators to simplified analytical solutions—leading to limited success. Compared with conventional reservoirs, gas flow in ultralow-permeability unconventional reservoirs is subject to more nonlinear, coupled processes, including nonlinear adsorption/desorption, non-Darcy flow (at both high flow rate and low flow rate), strong rock/fluid interaction, and rock deformation within nanopores or microfractures, coexisting with complex flow geometry and multiscaled heterogeneity. Therefore, quantifying flow in unconventional gas reservoirs has been a significant challenge, and the traditional representative-elementary-volume- (REV) based Darcy's law, for example, may not be generally applicable. In this paper, we discuss a generalized mathematical framework model and numerical approach for unconventional-gas-reservoir simulation. We present a unified framework model able to incorporate known mechanisms and processes for two-phase gas flow and transport in shale gas or tight gas formations. The model and numerical scheme are based on generalized flow models with unstructured grids. We discuss the numerical implementation of the mathematical model and show results of our model-verification effort. Specifically, we discuss a multidomain, multicontinuum concept for handling multiscaled heterogeneity and fractures [i.e., the use of hybrid modeling approaches to describe different types and scales of fractures or heterogeneous pores—from the explicit modeling of hydraulic fractures and the fracture network in stimulated reservoir volume (SRV) to distributed natural fractures, microfractures, and tight matrix]. We demonstrate model application to quantify hydraulic fractures and transient flow behavior in shale gas reservoirs.


SPE Journal ◽  
2016 ◽  
Vol 21 (06) ◽  
pp. 2276-2288 ◽  
Author(s):  
Yusuke Fujita ◽  
Akhil Datta-Gupta ◽  
Michael J. King

Summary Modeling of fluid flow in unconventional reservoirs requires accurate characterization of complex flow mechanisms because of the interactions between reservoir rock, microfractures, and hydraulic fractures. The pore-size distribution in shale and tight sand reservoirs typically ranges from nanometers to micrometers, resulting in ultralow permeabilities. In such extremely low-permeability reservoirs, desorption and diffusive processes play important roles in addition to heterogeneity-driven convective flows. For modeling shale and tight oil and gas reservoirs, we can compute the well-drainage volume efficiently with a fast marching method (FMM) and by introducing the concept of “diffusive time of flight” (DTOF). Our proposed simulation approach consists of two decoupled steps—drainage-volume calculation and numerical simulation with DTOF as a spatial coordinate. We first calculate the reservoir drainage volume and the DTOF with the FMM, and then the numerical simulation is conducted along the 1D DTOF coordinate. The approach is analogous to streamline modeling whereby a multidimensional simulation is decoupled to a series of 1D simulations resulting in substantial savings in computation time for high-resolution simulation. However, instead of a “convective time of flight” (CTOF), a DTOF is introduced to model the pressure-front propagation. For modeling physical processes, we propose triple continua whereby the reservoir is divided into three different domains: microscale pores (hydraulic fractures and microfractures), nanoscale pores (nanoporous networks), and organic matter. The hydraulic fractures/microfractures primarily contribute to the well production, and are affected by rock compaction. The nanoporous networks contain adsorbed gas molecules, and gas flows into fractures by convection and Knudsen diffusion processes. The organic matter acts as the source of gas. Our simulation approach enables high-resolution flow characterization of unconventional reservoirs because of its efficiency and versatility. We demonstrate the power and utility of our approach with synthetic and field examples.


2016 ◽  
Vol 9 (1) ◽  
pp. 207-215 ◽  
Author(s):  
Hongling Zhang ◽  
Jing Wang ◽  
Haiyong Zhang

Shale gas is one of the primary types of unconventional reservoirs to be exploited in search for long-lasting resources. Production from shale gas reservoirs requires horizontal drilling with hydraulic fracturing to achieve the most economic production. However, plenty of parameters (e.g., fracture conductivity, fracture spacing, half-length, matrix permeability, and porosity,etc) have high uncertainty that may cause unexpected high cost. Therefore, to develop an efficient and practical method for quantifying uncertainty and optimizing shale-gas production is highly desirable. This paper focuses on analyzing the main factors during gas production, including petro-physical parameters, hydraulic fracture parameters, and work conditions on shale-gas production performances. Firstly, numerous key parameters of shale-gas production from the fourteen best-known shale gas reservoirs in the United States are selected through the correlation analysis. Secondly, a grey relational grade method is used to quantitatively estimate the potential of developing target shale gas reservoirs as well as the impact ranking of these factors. Analyses on production data of many shale-gas reservoirs indicate that the recovery efficiencies are highly correlated with the major parameters predicted by the new method. Among all main factors, the impact ranking of major factors, from more important to less important, is matrix permeability, fracture conductivity, fracture density of hydraulic fracturing, reservoir pressure, total organic content (TOC), fracture half-length, adsorbed gas, reservoir thickness, reservoir depth, and clay content. This work can provide significant insights into quantifying the evaluation of the development potential of shale gas reservoirs, the influence degree of main factors, and optimization of shale gas production.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Shijun Huang ◽  
Jiaojiao Zhang ◽  
Sidong Fang ◽  
Xifeng Wang

In shale gas reservoirs, the production data analysis method is widely used to invert reservoir and fracture parameter, and productivity prediction. Compared with numerical models and semianalytical models, which have high computational cost, the analytical model is mostly used in the production data analysis method to characterize the complex fracture network formed after fracturing. However, most of the current calculation models ignore the uneven support of fractures, and most of them use a single supported fracture model to describe the flow characteristics, which magnifies the role of supported fracture to a certain extent. Therefore, in this study, firstly, the fractures are divided into supported fractures and unsupported fractures. According to the near-well supported fractures and far-well unsupported fractures, the SRV zone is divided into outer SRV and inner SRV. The four areas are characterized by different seepage models, and the analytical solutions of the models are obtained by Laplace transform and inverse transform. Secondly, the material balance pseudotime is introduced to process the production data under the conditions of variable production and variable pressure. The double logarithmic curves of normalized production rate, rate integration, the derivative of the integration, and material balance pseudotime are established, and the parameters are interpreted by fitting the theoretical curve to the measured data. Then, the accuracy of the method is verified by comparison the parameter interpretation results with well test results, and the influence of parameters such as the half-length and permeability of supported and unsupported fractures on gas production is analyzed. Finally, the proposed method is applied to four field cases in southwest China. This paper mainly establishes an analytical method for parameter interpretation after hydraulic fracturing based on the production data analysis method considering the uneven support of fractures, which is of great significance for understanding the mechanism of fracturing stimulation, optimization of fracturing parameters, and gas production forecast.


Sign in / Sign up

Export Citation Format

Share Document