Smart Actuators: A Predictive Maintenance Strategy to Achieve Cost-Saving Targets

2016 ◽  
Author(s):  
Stefano Martinelli
2016 ◽  
Author(s):  
Hongxia Wang ◽  
Xiaohui Ye ◽  
Ming Yin

2021 ◽  
Vol 23 (2) ◽  
pp. 387-394
Author(s):  
Chuang Chen ◽  
Cunsong Wang ◽  
Ningyun Lu ◽  
Bin Jiang ◽  
Yin Xing

Maintenance is fundamental to ensure the safety, reliability and availability of engineering systems, and predictive maintenance is the leading one in maintenance technology. This paper aims to develop a novel data-driven predictive maintenance strategy that can make appropriate maintenance decisions for repairable complex engineering systems. The proposed strategy includes degradation feature selection and degradation prognostic modeling modules to achieve accurate failure prognostics. For maintenance decision-making, the perfect time for taking maintenance activities is determined by evaluating the maintenance cost online that has taken into account of the failure prognostic results of performance degradation. The feasibility and effectiveness of the proposed strategy is confirmed using the NASA data set of aero-engines. Results show that the proposed strategy outperforms the two benchmark maintenance strategies: classical periodic maintenance and emerging dynamic predictive maintenance.


Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 2086 ◽  
Author(s):  
Fengdi Liu ◽  
Yihai He ◽  
Yixiao Zhao ◽  
Anqi Zhang ◽  
Di Zhou

Assembly quality is the barometer of assembly system health, and a healthy assembly system is an important physical guarantee for producing reliable products. Therefore, for ensuring the high reliability of products, the operational data of the assembly system should be analyzed to manage health states. Therefore, based on the operational data of the assembly system collected by intelligent sensors, from the perspective of quality control based on risk thinking, a risk-oriented health assessment method and predictive maintenance strategy for managing assembly system health are proposed. First, considering the loss of product reliability, the concept of assembly system health risk is proposed, and the risk formation mechanism is expounded. Second, the process variation data of key reliability characteristics (KRCs) collected by different sensors are used to measure and assess the health risk of the running assembly system to evaluate the health state. Third, the assembly system health risk is used as the maintenance threshold, the predictive maintenance decision model is established, and the optimal maintenance strategy is determined through stepwise optimization. Finally, the case study verifies the effectiveness and superiority of the proposed method. Results show that the proposed method saves 37.40% in costs compared with the traditional method.


Sign in / Sign up

Export Citation Format

Share Document