assembly system
Recently Published Documents


TOTAL DOCUMENTS

1125
(FIVE YEARS 194)

H-INDEX

43
(FIVE YEARS 6)

2022 ◽  
Vol 62 ◽  
pp. 317-333
Author(s):  
Chiu-Hsiang Lin ◽  
Kung-Jeng Wang ◽  
Ahmed Abide Tadesse ◽  
Bereket Haile Woldegiorgis

2022 ◽  
Vol 118 ◽  
pp. 104957
Author(s):  
Junzheng Li ◽  
Dong Pang ◽  
Yu Zheng ◽  
Xinping Guan ◽  
Xinyi Le

2022 ◽  
Vol 2146 (1) ◽  
pp. 012022
Author(s):  
Chenghua Hong ◽  
Han Ge ◽  
Cunzhong Fang ◽  
Xuyang Zhao ◽  
Ning Liu ◽  
...  

Abstract Rapid assembly modeling system is a tool that needs to be used in the design process. Because the three-dimensional modeling is intuitive, powerful and can be used in actual engineering, it is more and more used in manufacturing production. In the rapid development of computer-aided design technology, CAD/CAM software is the most commonly used and most widely used modeling tool. Therefore, the purpose of this article to study the rapid assembly modeling in the computer-aided design system is to improve the performance and accuracy of the assembly system and promote the high-quality production of products. This article mainly uses experimental method and case analysis method to test the assembly system designed in this article. The experimental results show that, under low temperature conditions, the relative error and absolute error of the assembly size are in a small space, which meets the actual requirements. Therefore, the system designed in this paper can be used in practice.


2021 ◽  
Author(s):  
jianxun chen ◽  
Qingcai Wu ◽  
Ganlong Wang ◽  
Pu Miao ◽  
Yi Li ◽  
...  

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ya'nan Lou ◽  
Pengkun Quan ◽  
Haoyu Lin ◽  
Zhuo Liang ◽  
Dongbo Wei ◽  
...  

Purpose This purpose of this paper is to design a peg-in-hole controller for a cable-driven serial robot with compliant wrist (CDSR-CW) using cable tensions and joint positions. The peg is connected to the robot link through a CW. It is required that the controller does not rely on any external sensors such as 6-axis wrist force/torque (F/T) sensor, and only the compliance matrix’s estimated value of the CW is known. Design/methodology/approach First, the peg-in-hole assembly system based on a CDSR-CW is analyzed. Second, a characterization algorithm using micro cable tensions and joint positions to express the elastic F/T at the CW is established. Next, under the premise of only knowing the compliance matrix’s estimate, a peg-in-hole controller based on force/position hybrid control is proposed. Findings The experiment results show that the plug contact F/T can be tracked well. This verifies the validity and correctness of the characterization algorithm and peg-in-hole controller for CDSR-CWs in this paper. Originality/value First, to the authors’ knowledge, there is no relevant work about the peg-in-hole assembly task using a CDSR-CW. Besides, the proposed characterization algorithm for the elastic F/T makes the peg-in-hole controller get rid of the dependence on the F/T sensor, which expands the application scenarios of the peg-in-hole controller. Finally, the controller does not require an accurate compliance matrix, which also increases its applicability.


Machines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 352
Author(s):  
Qidong Yin ◽  
Xiaochuan Luo ◽  
Julien Hohenstein

The automotive industry is undergoing a transformational period where more and more new energy vehicles (NEVs) are being produced and delivered to the market. Accordingly, some new challenges arise during the manufacturing process for car companies. Since the mixed-model assembly line has been widely used, how to integrate the NEVs into the existing assembly system that was designed for the production of gasoline cars is a key issue. A practical approach assigning a specific workforce to handle NEV assembly work is applied at the BMW assembly shop. This work studies this new production pattern and focuses on the design of the assembly system under this pattern. This work aims to develop a method for minimizing the production cost of NEV assembly. Thus, an exact algorithm for hierarchically solving the assembly line balancing problem and vehicle model sequencing problem is proposed. Mixed integer programming mathematical models that describe these two problems are formulated for the first time. Three new benchmark problems and one industry case that include the NEV models are created to evaluate the effectiveness of the proposed method. Results of numerical tests demonstrate that the developed algorithm can quickly generate reconfiguration solutions of the assembly line for various model mix scenarios and production rates. High flexibility of the manufacturing system can be obtained using the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document