Efficiency of Using a Proxy Model for Modeling of Reservoir Pressure

2021 ◽  
Author(s):  
Evgeniy Viktorovich Yudin ◽  
Nikolay Sergeevich Markov ◽  
Viktor Sergeevich Kotezhekov ◽  
Svetlana Olegovna Kraeva ◽  
Andrei Vasilyevich Makhnov ◽  
...  

Abstract The presented paper is devoted to the development and testing of a computational tool for assessment of the reservoir pressure and prompt generation of the pressure maps of collectors. The tool is based on a proxy model that allows to solve the two-dimensional diffusion equation for unsteady liquid filtration using the boundary element method. To expand the applicability of the proxy model, an algorithm for automated parameter adaptation was developed. This algorithm allows to exclude knowingly unreliable data or low-quality data from modeling. This is achieved due to analyzing the correlation between the injection, production and bottom-hole pressures for the entire well stock over the history of the reservoir development. In addition, this paper describes an approach to modeling two-phase oil and gas filtration based on the use of pseudofunctions. This approach considers the influence of gas on the oil filtration process. The use of pseudofunctions allows us to linearize the diffusion equation for two-phase filtration and to solve it using the boundary element method in the same manner as for the case of oil filtration without gas. To demonstrate the results of the proxy model validation, examples of its use for generating the pore pressure maps for two real collectors are given. The average values of the reservoir pressure at the wells calculated using the proxy model are compared with the results of the corresponding well tests and with the traditional isobar maps. The analysis showed that the average deviation of the proxy model from the real reservoir pressures is less than 10%.

Author(s):  
Joseph M. Corcoran ◽  
Ricardo A. Burdisso

Recently, a new model for the propagation of sound in interior volumes known as the acoustic diffusion equation has been explored as an alternative method for acoustic predictions and analysis. The model uses statistical methods standard in high frequency room acoustics to compute a spatial distribution of acoustic energy over time as a diffusion process. For volumes coupled through a structural partition, the energy consumed by structural vibration and acoustic energy transmitted between volumes has been incorporated through a simple acoustic transmission coefficient. In this paper, a Boundary Element Method (BEM) solution to the simple diffusion model is developed. The integral form of the 3D acoustic diffusion equation for coupled volumes is derived using the Laplace transform and Green’s Second Identity. The solution using the BEM is developed as well as an efficient Laplace transform inversion scheme to obtain both steady state and transient interior acoustic energy. In addition, a fully coupled model where both structural and acoustic energy are computed as a diffusion process is proposed. A simple volume configuration is examined as the diffusion models are analyzed and compared to conventional room acoustics analysis methods. Advantages of the energy diffusion methods over conventional methods, such as computation of energy distributions and accurate transmission from one volume to another, are revealed as the comparisons are made.


Sign in / Sign up

Export Citation Format

Share Document