New Advances in Surface Data Logging Technologies for Comprehensive Real-Time Petrophysical Evaluation to Optimize Logging Programs in a Mature Field; A Case History, Onshore, Abu Dhabi

2021 ◽  
Author(s):  
Saif Al Arfi ◽  
Mohamed Sarhan ◽  
Olawole Adene ◽  
Muhammad Rizky ◽  
Agung Baruno ◽  
...  

Abstract The challenges of drilling new wells are increasingly associated with minimizing HSE risks, that relate to chemical radioactive sources in the Bottom Hole Assembly for formation evaluation. Drilling risks such as differential sticking, also necessitates investigation of alternative petrophysical data gathering methodologies that can fulfil these requirements. Surface Data Logging presents a viable alternative in mature fields, satisfying petrophysical data gathering and interpretation in real-time as well, as traditional geological applications and offset well correlations in a way, to optimize well construction costs. During the planning phase, a fully integrated approach was adopted including advanced cutting and advanced gas analysis to be deployed, in this case study, well together with experienced well site personnel. A comprehensive pre-well study was conducted reviewing all offset nearby wells data. The workflow included provision of full real-time advanced cuttings and gas analysis for formation evaluation and reservoir fluid composition, lithology description, and addressing effective hole cleaning concerns. The advanced Mud Logging services was run in parallel to the Logging While Drilling services for a few pilot wells, in order to correlate downhole tool parameters, with respect to data quality control, to identify the petrophysical character of the formation markers for benchmarking future data gathering requirements. In addition to the potential use of standalone fully integrated advanced Mud Logging to reduce risks and minimize field development costs. With the help of experienced wellsite geologist on location and real time advanced gas detection utilizing high resolution mass spectrometer and X-Ray fluorescence (XRF) and X-Ray Diffraction (XRD) data, geological boundaries and formations tops were accurately identified across the whole drilled interval. Modern and advanced interpretation techniques for the integrated analysis were proven to be effective in determining sweet spots of the reservoir, fluid type, and overall reservoir quality. Deployment of fully integrated mud logging solutions with new interpretation methodologies can be effective in providing a better understanding of reservoir geological and petrophysical characteristics in real-time, offering viable alternative for minimizing formation evaluation sensors in the BHA, particularly eliminating radioactive sources, while reducing overall developments costs, without sacrificing formation evaluation requirements.

2021 ◽  
Author(s):  
Muhamad Aizat Kamaruddin ◽  
Ayham Ashqar ◽  
Muhammad Haniff Suhaimi ◽  
Fairus Azwardy Salleh

Abstract Uncertainties in fluid typing and contacts within Sarawak Offshore brown field required a real time decision. To enhance reservoir fluid characterisation and confirm reservoir connectivity prior to well final total depth (TD). Fluid typing while drilling was selected to assure the completion strategy and ascertain the fluvial reservoir petrophysical interpretation. Benefiting from low invasion, Logging While Drilling (LWD) sampling fitted with state of ART advanced spectroscopy sensors were deployed. Pressures and samples were collected. The well was drilled using synthetic base mud. Conventional logging while drilling tool string in addition to sampling tool that is equipped with advanced sensor technology were deployed. While drilling real time formation evaluation allowed selecting the zones of interest, while fluid typing was confirmed using continually monitored fluids pump out via multiple advanced sensors, contamination, and reservoir fluid properties were assessed while pumping. Pressure and sampling were performed in drilling mode to minimise reservoir damage, and optimise rig time, additionally sampling while drilling was performed under circulation conditions. Pressures were collected first followed by sampling. High success in collecting pressure points with a reliable fluid gradient that indicated a virgin reservoir allowed the selection of best completion strategy without jeopardising reserves, and reduced rig time. Total of seven samples from 3 different reservoirs, four oil, and three formation water. High quality samples were collected. The dynamic formation evaluation supported by while drilling sampling confirmed the reservoir fluid type and successfully discovered 39ft of oil net pay. Reservoir was completed as an oil producer. The Optical spectroscopy measurements allowed in situ fluid typing for the quick decision making. The use of advanced optical sensors allowed the sample collection and gave initial assessment on reservoir fluids properties, as a result cost saving due to eliminating the need for additional Drill Stem Test (DST) run to confirm the fluid type. Sample and formation pressures has confirmed reservoir lateral continuity in the vicinity of the field. The reservoir developed as thick and blocky sandstone. Collected sample confirmed the low contamination levels. Continuous circulation mitigated sticking and potential well-control risks. This is the first time in surrounding area, advanced optical sensors are used to aid LWD sampling and to finalize the fluid identification. The innovative technology allowed the collection of low contamination. The real-time in-situ fluid analysis measurement allowed critical decisions to be made real time, consequently reducing rig downtime. Reliable analysis of fluid type identification removed the need for additional run/service like DST etc.


2019 ◽  
Author(s):  
V. Franzi ◽  
C. Robert ◽  
A. Shoeibi ◽  
R. Galimberti ◽  
E. Ndonwie Mahbou ◽  
...  

2017 ◽  
Author(s):  
Endurance Ighodalo ◽  
Graham Davies ◽  
Steve Austin D'Souza ◽  
Abdelhamid Ahmed

2001 ◽  
Vol 4 (06) ◽  
pp. 489-501 ◽  
Author(s):  
D. Kandel ◽  
R. Quagliaroli ◽  
G. Segalini ◽  
B. Barraud

Summary The acquisition of gas in mud data while drilling for geological surveillance and safety is an almost universal practice. This source of data is only rarely used for formation evaluation because of the widely accepted presumption that it is unreliable and unrepresentative. Recent developments in the mud-logging industry to improve gas data acquisition and analysis have led to the availability of better quality data. Within a joint Elf/Eni-Agip Div. research program, a new interpretation method has been developed following the comprehensive analysis and interpretation of gas data from a wide range of wells covering different types of geological, petroleum, and drilling environments. The results, validated by correlation and comparison with other data such as logs, well tests, and pressure/volume temperature (PVT) data, enable us to characterize lithological changes; porosity variations and permeability barriers; seal depth, thickness, and efficiency; gas diffusion or leakage; gas/oil and hydrocarbon/water contacts; vertical changes in fluid over a thick monolayer pay zone; vertical fluid differentiation in multilayer intervals; and biodegradation. The comparison of surface gas, PVT, and geochemistry data clearly confirms the consistency between the drilling gas data (gas shows) and the corresponding reservoir fluid composition. The near real-time availability, at no extra acquisition cost, of such data has led to:The optimization of future well operations (such as logging and testing).A better integration of while-drilling data to the well evaluation process.A significant improvement in both early formation evaluation and reservoir studies, especially for the following applications, in which traditional log analysis often remains inconclusive:Very-low-porosity reservoirs.Thin beds.Dynamic barriers and seal efficiency.Low-resistivity pay.Light hydrocarbons. Examples show gas while drilling (GWD) wellsite quicklook interpretations with simple lithological and fluid interpretations, as well as more complex reservoir and fluid characterization applications in varied geographical and geological contexts; both demonstrate how GWD data are integrated with more standard data sets. Introduction The measurement of gas shows is standard practice during the drilling of exploration and development wells. Continuous gas monitoring sometimes enables us to indicate, in general terms, the presence of hydrocarbon-bearing intervals, but it rarely allows us to define the fluid types (oil, condensate and/or gas, and water). Gas data are at present largely underused because they are considered unreliable and not fully representative of the formation fluids. There are many reasons for this. On one hand, poorly established correlations exist between reservoir fluids and shows at surface; on the other hand, numerous drilling parameters strongly influence the recorded gas data, such as formation pressure, mud weight and type, gas-trap position in the shaker ditch, and mud-out temperatures. One reason may be the very low cost of such data, often equated with low value. Until a few years ago, the analysis performed on gas shows was generally restricted to the use of Pixler and/or Geoservices diagrams (or equivalent), wetness, balance, character, and gas normalization.1–4 Recent improvements in gas-acquisition technology and the new GWD methodology allow us to perform reservoir interpretation in near real time for fluid identification and contacts [oil/water contact (OWC), gas/oil contact (GOC), etc.], lithological changes, and barrier efficiency, thus allowing operations optimization (e.g., coring, wireline recording and sampling, and testing operations). It is also possible to integrate the GWD interpretation in reservoir, geochemical, PVT analysis, and comprehensive studies. Method Data Acquisition. The measurement of gas shows in the circulating drilling mud was introduced in the early days of mud logging (ML) with two objectives: first, as a safety device to indicate well behavior to drillers, and second, as an indicator of hydrocarbon-bearing zones. Today, gas-shows measurement is systematically acquired in the petroleum industry for the same reason, but it is seldom used to its full potential, mainly because of an ongoing prejudice that the data are not representative of the formation fluids and/or that the recording of these data is strongly influenced by varying drilling parameters. The ML gas system is composed of three parts:A "gas trap" to extract gas from the mud stream situated somewhere between the bell nipple and the shaker box (often in the latter).Lines, pumps, and filters enabling the transport of a dry-gas sample to the ML unit.A detection system in the ML unit. Recent efforts in the mud-logging industry to improve gas-data acquisition and analysis have led to the availability of better quality data, which has provided reliable lithological and fluid information since the 1990s. In the 1980s, most of the ML companies introduced the flame ionization detectors (FID) to replace previous total gas (TG) and chromatograph measurements. The TG measurement gives the total amount of hydrocarbon components extracted from the mud and burned in the detector. The TG could now be correlated with the C1-C5 readings from the new breed of chromatographs.5 Finally, over the past few years, several ML companies have introduced fast-gas chromatographs with improved resolution (C1-C5 in less than 1 minute), improved C1/C2 separation, and, above all, improved reliability and repeatability. High-speed chromatographs using a thermal-conductivity detector have also appeared on the market, but they were not tested within this project. Work carried out by Texaco in the early 1990s led to a significant improvement in basic trap design with the introduction of the quantitative gas measurement (QGM) trap, which was a major step in reducing the effect of environmental changes.6 An alternative proposition from Geoservices was to replace the trap, generally situated in the shaker box, with a pumping system supplying the trap with a constant volume of mud sucked from a probe situated close in the flowline to the bell nipple.7


1986 ◽  
Vol 47 (10) ◽  
pp. 1791-1795 ◽  
Author(s):  
M. Ribet ◽  
S. Gits-Léon ◽  
F. Lefaucheux ◽  
M.C. Robert
Keyword(s):  

2018 ◽  
Vol 2018 (1) ◽  
pp. 162-165
Author(s):  
Shin Mizutani ◽  
Daichi Yamaguchi ◽  
Takeshi Fujiwara ◽  
Masato Yasumoto ◽  
Ryunosuke Kuroda
Keyword(s):  
X Ray ◽  

Author(s):  
Florian Agbuya ◽  
Gerard Francesco Apolinario ◽  
Dianne Marie Ramos ◽  
JD Mark Villanueva ◽  
Princess Zafe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document